Skip to content

Pytorch implementation of Generative Adversarial Networks (GAN) and Deep Convolutional Generative Adversarial Networks (DCGAN) for MNIST and CelebA datasets

Notifications You must be signed in to change notification settings

py-ranoid/pytorch-MNIST-CelebA-GAN-DCGAN

 
 

Repository files navigation

pytorch-MNIST-CelebA-GAN-DCGAN

Pytorch implementation of Generative Adversarial Networks (GAN) [1] and Deep Convolutional Generative Adversarial Networks (DCGAN) [2] for MNIST [3] and CelebA [4] datasets.

  • If you want to train using cropped CelebA dataset, you have to change isCrop = False to isCrop = True.

  • you can download

  • pytorch_CelebA_DCGAN.py requires 64 x 64 size image, so you have to resize CelebA dataset (celebA_data_preprocess.py).

  • pytorch_CelebA_DCGAN.py added learning rate decay code.

Implementation details

  • GAN

GAN

  • DCGAN

Loss

Resutls

MNIST

  • Generate using fixed noise (fixed_z_)
GAN DCGAN
  • MNIST vs Generated images
MNIST GAN after 100 epochs DCGAN after 20 epochs
  • Training loss

    • GAN Loss
  • Learning Time

    • MNIST DCGAN - Avg. per epoch: 197.86 sec; (if you want to reduce learning time, you can change 'generator(128)' and 'discriminator(128)' to 'generator(64)' and 'discriminator(64)' ... then Avg. per epoch: about 67sec in my development environment.)

CelebA

  • Generate using fixed noise (fixed_z_)
DCGAN DCGAN crop
  • CelebA vs Generated images
CelebA DCGAN after 20 epochs DCGAN crop after 30 epochs
  • Learning Time
    • CelebA DCGAN - Avg. per epoch: 732.54 sec; total 20 epochs ptime: 14744.66 sec

Development Environment

  • Ubuntu 14.04 LTS
  • NVIDIA GTX 1080 ti
  • cuda 8.0
  • Python 2.7.6
  • pytorch 0.1.12
  • torchvision 0.1.8
  • matplotlib 1.3.1
  • imageio 2.2.0
  • scipy 0.19.1

Reference

[1] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

(Full paper: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf)

[2] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

(Full paper: https://arxiv.org/pdf/1511.06434.pdf)

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.

[4] Liu, Ziwei, et al. "Deep learning face attributes in the wild." Proceedings of the IEEE International Conference on Computer Vision. 2015.

About

Pytorch implementation of Generative Adversarial Networks (GAN) and Deep Convolutional Generative Adversarial Networks (DCGAN) for MNIST and CelebA datasets

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%