Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: Enable smoothing at any analysis level #135

Merged
merged 16 commits into from
May 1, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 7 additions & 4 deletions fitlins/cli/run.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,10 +96,13 @@ def get_parser():
help="use BOLD files with the provided description label")

g_prep = parser.add_argument_group('Options for preprocessing BOLD series')
g_prep.add_argument('-s', '--smoothing', action='store', metavar="TYPE:FWHM",
help="Smooth BOLD series with FWHM mm kernel prior to fitting. "
"Valid types: iso (isotropic); "
"e.g. `--smothing iso:5` will use an isotropic 5mm FWHM kernel")
g_prep.add_argument('-s', '--smoothing', action='store', metavar="FWHM[:LEVEL:[TYPE]]",
help="Smooth BOLD series with FWHM mm kernel prior to fitting at LEVEL. "
"Optional analysis LEVEL (default: l1) may be specified numerically "
"(e.g., `l1`) or by name (`run`, `subject`, `session` or `dataset`). "
"Optional smoothing TYPE (default: iso) must be one of: `iso` (isotropic). "
"e.g., `--smoothing 5:dataset:iso` will perform a 5mm FWHM isotropic "
"smoothing on subject-level maps, before evaluating the dataset level.")

g_perfm = parser.add_argument_group('Options to handle performance')
g_perfm.add_argument('--n-cpus', action='store', default=0, type=int,
Expand Down
7 changes: 6 additions & 1 deletion fitlins/interfaces/nistats.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,6 +142,7 @@ class SecondLevelModelInputSpec(BaseInterfaceInputSpec):
variance_maps = traits.List(traits.List(File(exists=True)))
stat_metadata = traits.List(traits.List(traits.Dict), mandatory=True)
contrast_info = traits.List(traits.Dict, mandatory=True)
smoothing_fwhm = traits.Float(desc='Full-width half max (FWHM) in mm for smoothing in mask')


class SecondLevelModelOutputSpec(TraitedSpec):
Expand Down Expand Up @@ -171,7 +172,11 @@ class SecondLevelModel(NistatsBaseInterface, SimpleInterface):

def _run_interface(self, runtime):
from nistats import second_level_model as level2
model = level2.SecondLevelModel()
smoothing_fwhm = self.inputs.smoothing_fwhm
if not isdefined(smoothing_fwhm):
smoothing_fwhm = None
model = level2.SecondLevelModel(smoothing_fwhm=smoothing_fwhm)

effect_maps = []
variance_maps = []
stat_maps = []
Expand Down
35 changes: 29 additions & 6 deletions fitlins/workflows/base.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from pathlib import Path
import warnings
from nipype.pipeline import engine as pe
from nipype.interfaces import utility as niu
# from nipype.interfaces import fsl
Expand Down Expand Up @@ -59,17 +60,36 @@ def init_fitlins_wf(bids_dir, derivatives, out_dir, analysis_level, space,
name='getter')

if smoothing:
smoothing_params = smoothing.split(':', 1)
if smoothing_params[0] != 'iso':
raise ValueError(f"Unknown smoothing type {smoothing_params[0]}")
smoothing_fwhm = float(smoothing_params[1])
smoothing_params = smoothing.split(':', 2)
effigies marked this conversation as resolved.
Show resolved Hide resolved
# Convert old style and warn; this should turn into an (informative) error around 0.5.0
if smoothing_params[0] == 'iso':
smoothing_params = (smoothing_params[1], 'l1', smoothing_params[0])
warnings.warn(
"The format for smoothing arguments has changed. Please use "
f"{':'.join(smoothing_params)} instead of {smoothing}.", FutureWarning)
# Add defaults to simplify later logic
if len(smoothing_params) == 1:
smoothing_params.extend(('l1', 'iso'))
elif len(smoothing_params) == 2:
smoothing_params.append('iso')

smoothing_fwhm, smoothing_level, smoothing_type = smoothing_params
smoothing_fwhm = float(smoothing_fwhm)
if smoothing_type not in ('iso'):
raise ValueError(f"Unknown smoothing type {smoothing_type}")

# Check that smmoothing level exists in model
if (smoothing_level.startswith("l") and
int(smoothing_level.strip("l")) > len(model_dict)):
raise ValueError(f"Invalid smoothing level {smoothing_level}")
elif (smoothing_level not in
[step['Level'] for step in model_dict['Steps']]):
raise ValueError(f"Invalid smoothing level {smoothing_level}")

l1_model = pe.MapNode(
FirstLevelModel(),
iterfield=['session_info', 'contrast_info', 'bold_file', 'mask_file'],
name='l1_model')
if smoothing:
l1_model.inputs.smoothing_fwhm = smoothing_fwhm

# Set up common patterns
image_pattern = 'reports/[sub-{subject}/][ses-{session}/]figures/[run-{run}/]' \
Expand Down Expand Up @@ -161,6 +181,9 @@ def init_fitlins_wf(bids_dir, derivatives, out_dir, analysis_level, space,

level = 'l{:d}'.format(ix + 1)

if smoothing and smoothing_level in (step, level):
model.inputs.smoothing_fwhm = smoothing_fwhm

# TODO: No longer used at higher level, suggesting we can simply return
# entities from loader as a single list
select_entities = pe.Node(
Expand Down