Skip to content

plar/go-adaptive-radix-tree

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

77 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

An Adaptive Radix Tree Implementation in Go

Coverage Status Go Report Card GoDoc

This library provides a Go implementation of the Adaptive Radix Tree (ART).

Features:

  • Lookup performance surpasses highly tuned alternatives
  • Support for highly efficient insertions and deletions
  • Space efficient
  • Performance is comparable to hash tables
  • Maintains the data in sorted order, which enables additional operations like range scan and prefix lookup
  • O(k) search/insert/delete operations, where k is the length of the key
  • Minimum / Maximum value lookups
  • Ordered iteration
  • Prefix-based iteration
  • Support for keys with null bytes, any byte array could be a key

Usage

package main

import (
    "fmt"
    "github.com/plar/go-adaptive-radix-tree"
)

func main() {

    tree := art.New()

    tree.Insert(art.Key("Hi, I'm Key"), "Nice to meet you, I'm Value")
    value, found := tree.Search(art.Key("Hi, I'm Key"))
    if found {
        fmt.Printf("Search value=%v\n", value)
    }

    tree.ForEach(func(node art.Node) bool {
        fmt.Printf("Callback value=%v\n", node.Value())
        return true
    })

    for it := tree.Iterator(); it.HasNext(); {
        value, _ := it.Next()
        fmt.Printf("Iterator value=%v\n", value.Value())
    }
}

// Output:
// Search value=Nice to meet you, I'm Value
// Callback value=Nice to meet you, I'm Value
// Iterator value=Nice to meet you, I'm Value

Documentation

Check out the documentation on godoc.org

Performance

plar/go-adaptive-radix-tree outperforms kellydunn/go-art by avoiding memory allocations during search operations. It also provides prefix based iteration over the tree.

Benchmarks were performed on datasets extracted from different projects:

  • The "Words" dataset contains a list of 235,886 english words. [2]
  • The "UUIDs" dataset contains 100,000 uuids. [2]
  • The "HSK Words" dataset contains 4,995 words. [4]
go-adaptive-radix-tree # Average time Bytes per operation Allocs per operation
Tree Insert Words 9 117,888,698 ns/op 37,942,744 B/op 1,214,541 allocs/op
Tree Search Words 26 44,555,608 ns/op 0 B/op 0 allocs/op
Tree Insert UUIDs 18 59,360,135 ns/op 18,375,723 B/op 485,057 allocs/op
Tree Search UUIDs 54 21,265,931 ns/op 0 B/op 0 allocs/op
go-art
Tree Insert Words 5 272,047,975 ns/op 81,628,987 B/op 2,547,316 allocs/op
Tree Search Words 10 129,011,177 ns/op 13,272,278 B/op 1,659,033 allocs/op
Tree Insert UUIDs 10 140,309,246 ns/op 33,678,160 B/op 874,561 allocs/op
Tree Search UUIDs 20 82,120,943 ns/op 3,883,131 B/op 485,391 allocs/op

To see more benchmarks just run

$ ./make qa/benchmarks

References

[1] The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases (Specification)

[2] C99 implementation of the Adaptive Radix Tree

[3] Another Adaptive Radix Tree implementation in Go

[4] HSK Words. HSK(Hanyu Shuiping Kaoshi) - Standardized test of Standard Mandarin Chinese proficiency.