Parthenon -- a performance portable block-structured adaptive mesh refinement framework
- High performance by
- device first/device resident approach (work data only in device memory to prevent expensive transfers between host and device)
- transparent packing of data across blocks (to reduce/hide kernel launch latency)
- direct device-to-device communication via asynchronous MPI communication
- Intermediate abstraction layer to hide complexity of device kernel launches
- Flexible, plug-in package system
- Abstract variables controlled via metadata flags
- Support for particles
- Support for cell-, node-, face-, and edge-centered fields
- Multi-stage drivers/integrators with support for task-based parallelism
- CMake 3.16 or greater
- C++17 compatible compiler
- Kokkos 4.4.1 or greater
- MPI
- OpenMP
- HDF5 (for outputs)
- Ascent (for in situ visualization and analysis)
- catch2 (for unit tests)
- python3 (for regression tests)
- numpy (for regression tests)
- matplotlib (optional, for plotting results of regression tests)
For detailed instructions for a given system, see our build doc.
mkdir build
cd build
cmake ../
cmake --build . -j 8
ctest
// Imports all of parthenon's public interface
#include <parthenon/parthenon.hpp>
// You can use one of the following headers instead if you want to limit how
// much you import. They import Parthenon's Driver and Package APIs,
// respectively
#include <parthenon/driver.hpp>
#include <parthenon/package.hpp>
// The following namespaces are good short-hands to import commonly used names
// for each set of Parthenon APIs.
using namespace parthenon::driver::prelude;
using namespace parthenon::package::prelude;
Following options are available to configure the default behavior of the par_for
wrappers.
PAR_LOOP_LAYOUT
(sets default layout)MANUAL1D_LOOP
maps toKokkos::RangePolicy
(default for CUDA backend)MDRANGE
maps toKokkos::MDRangePolicy
SIMDFOR_LOOP
maps to standardfor
loops with#pragma omp simd
(default for OpenMP backend)TPTTR_LOOP
maps to double nested loop withKokkos::TeamPolicy
andKokkos::ThreadVectorRange
TPTVR_LOOP
maps to double nested loop withKokkos::TeamPolicy
andKokkos::ThreadVectorRange
TPTTRTVR_LOOP
maps to triple nested loop withKokkos::TeamPolicy
,Kokkos::TeamThreadRange
andKokkos::ThreadVectorRange
Similarly, for explicit nested paralellism the par_for_outer
and par_for_inner
wrappers are available.
par_for_outer
always maps to a Kokkos::TeamPolicy
and the par_for_inner
mapping is controlled by the
PAR_LOOP_INNER_LAYOUT
(sets default innermost loop layout forpar_for_inner
)SIMDFOR_INNER_LOOP
maps to standardfor
loops with#pragma omp simd
(default for OpenMP backend)TVR_INNER_LOOP
maps toKokkos::TeamVectorRange
(default for CUDA backend)
Kokkos can be configured through cmake
options, see https://github.com/kokkos/kokkos/wiki/Compiling
For example to build with the OpenMP backend for Intel Skylake architecture using Intel compilers
mkdir build-omp-skx && cd build-omp-skx
cmake -DKokkos_ENABLE_OPENMP=ON -DCMAKE_CXX_COMPILER=icpc -DKokkos_ARCH_SKX=ON ../
or to build for NVIDIA V100 GPUs (using nvcc
compiler for GPU code, which is automatically picked up by Kokkos
)
mkdir build-cuda-v100 && cd build-cuda-v100
cmake -DKokkos_ENABLE_CUDA=ON -DKokkos_ARCH_VOLTA70=On ../
or to build for AMD MI100 GPUs (using hipcc
compiler)
mkdir build-hip-mi100 && cd build-hip-mi100
cmake -DKokkos_ENABLE_HIP=ON -DCMAKE_CXX_COMPILER=hipcc -DKokkos_ARCH_Vega908=ON ../
Please see the developer guidelines for additional information.
Please see the docs for additional documentation on features and how to use them.
Name | Handle | Team |
---|---|---|
Jonah Miller | @Yurlungur | LANL Physics |
Josh Dolence | @jdolence | LANL Physics |
Andrew Gaspar | @AndrewGaspar | LANL Computer Science |
Philipp Grete | @pgrete | Athena Physics |
Forrest Glines | @forrestglines | Athena Physics |
Jim Stone | @jmstone | Athena Physics |
Jonas Lippuner | @jlippuner | LANL Computer Science |
Joshua Brown | @JoshuaSBrown | LANL Computer Science |
Christoph Junghans | @junghans | LANL Computer Science |
Sriram Swaminarayan | @nmsriram | LANL Computer Science |
Daniel Holladay | @dholladay00 | LANL Computer Science |
Galen Shipman | @gshipman | LANL Computer Science |
Ben Ryan | @brryan | LANL Physics |
Clell J. (CJ) Solomon | @clellsolomon | LANL Physics |
Luke Roberts | @lroberts36 | LANL Physics |
Ben Prather | @bprather | LANL Physics |