Skip to content

MLX-Embeddings is the best package for running Vision and Language Embedding models locally on your Mac using MLX.

License

Notifications You must be signed in to change notification settings

pappitti/mlx-embeddings

 
 

Repository files navigation

MLX-Embeddings

image

MLX-Embeddings is a package for running Vision and Language Embedding models locally on your Mac using MLX.

  • Free software: GNU General Public License v3

Features

  • Generate embeddings for text and images using MLX models
  • Support for single-item and batch processing
  • Utilities for comparing text similarities

Installation

You can install mlx-embeddings using pip:

pip install mlx-embeddings

Usage

Single Item Embedding

To generate an embedding for a single piece of text:

from mlx_embeddings.utils import load

# Load the model and tokenizer
model_name = "sentence-transformers/all-MiniLM-L6-v2"  
model, tokenizer = load(model_name)

# Prepare the text
text = "I like reading"

# Tokenize and generate embedding
input_ids = tokenizer.encode(text, return_tensors="mlx")
outputs = model(input_ids)
raw_embeds = outputs.last_hidden_state[:, 0, :] # CLS token
text_embeds = ouputs.text_embeds # mean pooled and normalized embeddings

Note : text-embeds use mean pooling for bert and xlm-robert. For modernbert, pooling strategy is set through the config file, defaulting to mean

Batch Processing and Multiple Texts Comparison

To embed multiple texts and compare them using their embeddings:

from sklearn.metrics.pairwise import cosine_similarity
import matplotlib.pyplot as plt
import seaborn as sns
import mlx.core as mx
from mlx_embeddings.utils import load

# Load the model and tokenizer
model, tokenizer = load("sentence-transformers/all-MiniLM-L6-v2")

def get_embedding(texts, model, tokenizer):
    inputs = tokenizer.batch_encode_plus(texts, return_tensors="mlx", padding=True, truncation=True, max_length=512)
    outputs = model(
        inputs["input_ids"],
        attention_mask=inputs["attention_mask"]
    )
    return outputs.text_embeds # mean pooled and normalized embeddings

def compute_and_print_similarity(embeddings):
    B, _ = embeddings.shape
    similarity_matrix = cosine_similarity(embeddings)
    print("Similarity matrix between sequences:")
    print(similarity_matrix)
    print("\n")

    for i in range(B):
        for j in range(i+1, B):
            print(f"Similarity between sequence {i+1} and sequence {j+1}: {similarity_matrix[i][j]:.4f}")

    return similarity_matrix

# Visualize results
def plot_similarity_matrix(similarity_matrix, labels):
    plt.figure(figsize=(5, 4))
    sns.heatmap(similarity_matrix, annot=True, cmap='coolwarm', xticklabels=labels, yticklabels=labels)
    plt.title('Similarity Matrix Heatmap')
    plt.tight_layout()
    plt.show()

# Sample texts
texts = [
    "I like grapes",
    "I like fruits",
    "The slow green turtle crawls under the busy ant."
]

embeddings = get_embedding(texts, model, tokenizer)
similarity_matrix = compute_and_print_similarity(embeddings)

# Visualize results
labels = [f"Text {i+1}" for i in range(len(texts))]
plot_similarity_matrix(similarity_matrix, labels)

Supported Models Archictectures

MLX-Embeddings supports a variety of model architectures for text embedding tasks. Here's a breakdown of the currently supported architectures:

  • XLM-RoBERTa (Cross-lingual Language Model - Robustly Optimized BERT Approach)
  • BERT (Bidirectional Encoder Representations from Transformers)
  • ModernBERT (modernized bidirectional encoder-only Transformer model)

We're continuously working to expand our support for additional model architectures. Check our GitHub repository or documentation for the most up-to-date list of supported models and their specific versions.

Vision Transformer Models

MLX-Embeddings also supports vision models that can generate embeddings for images or image-text pairs.

Single Image Processing

To evaluate how well an image matches different text descriptions:

import mlx.core as mx
from mlx_embeddings.utils import load
import requests
from PIL import Image

# Load vision model and processor
model, processor = load("google/siglip-so400m-patch14-384")

# Load an image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

# Create text descriptions to compare with the image
texts = ["a photo of 2 dogs", "a photo of 2 cats"]

# Process inputs
inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
pixel_values = mx.array(inputs.pixel_values).transpose(0, 2, 3, 1).astype(mx.float32)
input_ids = mx.array(inputs.input_ids)

# Generate embeddings and calculate similarity
outputs = model(pixel_values=pixel_values, input_ids=input_ids)
logits_per_image = outputs.logits_per_image
probs = mx.sigmoid(logits_per_image)  # probabilities of image matching each text

# Print results
print(f"{probs[0][0]:.1%} that image matches '{texts[0]}'")
print(f"{probs[0][1]:.1%} that image matches '{texts[1]}'")

Batch Processing for Multiple Images

Process multiple images and compare them with text descriptions:

import mlx.core as mx
from mlx_embeddings.utils import load
import requests
from PIL import Image
import matplotlib.pyplot as plt
import seaborn as sns

# Load vision model and processor
model, processor = load("google/siglip-so400m-patch14-384")

# Load multiple images
image_urls = [
    "./images/cats.jpg",  # cats
    "./images/desktop_setup.png"   # desktop setup
]
images = [Image.open(requests.get(url, stream=True).raw) if url.startswith("http") else Image.open(url) for url in image_urls]

# Text descriptions
texts = ["a photo of cats", "a photo of a desktop setup", "a photo of a person"]

# Process all image-text pairs
all_probs = []

for i, image in enumerate(images):
    # Process inputs for current image with all texts
    inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
    pixel_values = mx.array(inputs.pixel_values).transpose(0, 2, 3, 1).astype(mx.float32)
    input_ids = mx.array(inputs.input_ids)

    # Generate embeddings and calculate similarity
    outputs = model(pixel_values=pixel_values, input_ids=input_ids)
    logits_per_image = outputs.logits_per_image
    probs = mx.sigmoid(logits_per_image)[0]  # probabilities for this image
    all_probs.append(probs.tolist())

    # Print results for this image
    print(f"Image {i+1}:")
    for j, text in enumerate(texts):
        print(f"  {probs[j]:.1%} match with '{text}'")
    print()

# Visualize results with a heatmap
def plot_similarity_matrix(probs_matrix, image_labels, text_labels):
    plt.figure(figsize=(8, 5))
    sns.heatmap(probs_matrix, annot=True, cmap='viridis',
                xticklabels=text_labels, yticklabels=image_labels,
                fmt=".1%", vmin=0, vmax=1)
    plt.title('Image-Text Match Probability')
    plt.tight_layout()
    plt.show()

image_labels = [f"Image {i+1}" for i in range(len(images))]
plot_similarity_matrix(all_probs, image_labels, texts)

Contributing

Contributions to MLX-Embeddings are welcome! Please refer to our contribution guidelines for more information.

License

This project is licensed under the GNU General Public License v3.

Contact

For any questions or issues, please open an issue on the GitHub repository.

About

MLX-Embeddings is the best package for running Vision and Language Embedding models locally on your Mac using MLX.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%