This is a repo about GNN and DGL
- 安装wsl2(windows的linux子系统)
- 配python环境+安装DGL Deep Graph Library (dgl.ai)
- 读DGL里面三个模型GCN, RGCN, GAT的代码,跑一下example
-
下载zotero
-
A Gentle Introduction to Graph Neural Networks (distill.pub)
-
综述论文:Graph Neural Networks: A Review of Methods and Applications
-
了解GNN的基本模型:GCN (Graph convolution network), RGCN (Relational graph convolution network), GAT (Graph attention network)
总结整合了GNN目前的主流研究方向
汇总目前GNN比较热门的研究方向
- Graph Generation & Transformation
- Dynamic Graph
- Graph Matching
- GNN sample methods
- Hetergeneous graph
- Link prediction
UNDERSTANDING GNN COMPUTATIONAL GRAPH
GCN (Graph convolutional network)
- Semi-Supervised Classification with Graph Convolutional Networks
- Graph Convolutional Network — DGL 0.8.0post2 documentation
GAT (Graph attention network)
RGCN (Relational graph convolutional network)
- Modeling Relational Data with Graph Convolutional Networks
- Relational Graph Convolutional Network — DGL 0.8.0post2 documentation
TGN (temporal graph network)