Skip to content
4 changes: 2 additions & 2 deletions doc/source/user_guide/cookbook.rst
Original file line number Diff line number Diff line change
Expand Up @@ -459,7 +459,7 @@ Unlike agg, apply's callable is passed a sub-DataFrame which gives you access to
df

# List the size of the animals with the highest weight.
df.groupby("animal").apply(lambda subf: subf["size"][subf["weight"].idxmax()])
df.groupby("animal")[["size", "weight"]].apply(lambda subf: subf["size"][subf["weight"].idxmax()])

`Using get_group
<https://stackoverflow.com/questions/14734533/how-to-access-pandas-groupby-dataframe-by-key>`__
Expand All @@ -482,7 +482,7 @@ Unlike agg, apply's callable is passed a sub-DataFrame which gives you access to
return pd.Series(["L", avg_weight, True], index=["size", "weight", "adult"])


expected_df = gb.apply(GrowUp)
expected_df = gb[["size", "weight"]].apply(GrowUp)
expected_df

`Expanding apply
Expand Down
8 changes: 4 additions & 4 deletions doc/source/user_guide/groupby.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1067,7 +1067,7 @@ missing values with the ``ffill()`` method.
).set_index("date")
df_re

df_re.groupby("group").resample("1D").ffill()
df_re.groupby("group")[["val"]].resample("1D").ffill()

.. _groupby.filter:

Expand Down Expand Up @@ -1233,13 +1233,13 @@ the argument ``group_keys`` which defaults to ``True``. Compare

.. ipython:: python

df.groupby("A", group_keys=True).apply(lambda x: x)
df.groupby("A", group_keys=True)[["B", "C", "D"]].apply(lambda x: x)

with

.. ipython:: python

df.groupby("A", group_keys=False).apply(lambda x: x)
df.groupby("A", group_keys=False)[["B", "C", "D"]].apply(lambda x: x)


Numba Accelerated Routines
Expand Down Expand Up @@ -1722,7 +1722,7 @@ column index name will be used as the name of the inserted column:
result = {"b_sum": x["b"].sum(), "c_mean": x["c"].mean()}
return pd.Series(result, name="metrics")

result = df.groupby("a").apply(compute_metrics)
result = df.groupby("a")[["b", "c"]].apply(compute_metrics)

result

Expand Down
22 changes: 17 additions & 5 deletions doc/source/whatsnew/v0.14.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -328,13 +328,25 @@ More consistent behavior for some groupby methods:

- groupby ``head`` and ``tail`` now act more like ``filter`` rather than an aggregation:

.. ipython:: python
.. code-block:: ipython

df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])
g = df.groupby('A')
g.head(1) # filters DataFrame
In [1]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])

In [2]: g = df.groupby('A')

In [3]: g.head(1) # filters DataFrame
Out[3]:
A B
0 1 2
2 5 6

In [4]: g.apply(lambda x: x.head(1)) # used to simply fall-through
Out[4]:
A B
A
1 0 1 2
5 2 5 6

g.apply(lambda x: x.head(1)) # used to simply fall-through

- groupby head and tail respect column selection:

Expand Down
93 changes: 87 additions & 6 deletions doc/source/whatsnew/v0.18.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -77,9 +77,52 @@ Previously you would have to do this to get a rolling window mean per-group:
df = pd.DataFrame({"A": [1] * 20 + [2] * 12 + [3] * 8, "B": np.arange(40)})
df

.. ipython:: python
.. code-block:: ipython

df.groupby("A").apply(lambda x: x.rolling(4).B.mean())
In [1]: df.groupby("A").apply(lambda x: x.rolling(4).B.mean())
Out[1]:
A
1 0 NaN
1 NaN
2 NaN
3 1.5
4 2.5
5 3.5
6 4.5
7 5.5
8 6.5
9 7.5
10 8.5
11 9.5
12 10.5
13 11.5
14 12.5
15 13.5
16 14.5
17 15.5
18 16.5
19 17.5
2 20 NaN
21 NaN
22 NaN
23 21.5
24 22.5
25 23.5
26 24.5
27 25.5
28 26.5
29 27.5
30 28.5
31 29.5
3 32 NaN
33 NaN
34 NaN
35 33.5
36 34.5
37 35.5
38 36.5
39 37.5
Name: B, dtype: float64

Now you can do:

Expand All @@ -101,15 +144,53 @@ For ``.resample(..)`` type of operations, previously you would have to:

df

.. ipython:: python
.. code-block:: ipython

df.groupby("group").apply(lambda x: x.resample("1D").ffill())
In[1]: df.groupby("group").apply(lambda x: x.resample("1D").ffill())
Out[1]:
group val
group date
1 2016-01-03 1 5
2016-01-04 1 5
2016-01-05 1 5
2016-01-06 1 5
2016-01-07 1 5
2016-01-08 1 5
2016-01-09 1 5
2016-01-10 1 6
2 2016-01-17 2 7
2016-01-18 2 7
2016-01-19 2 7
2016-01-20 2 7
2016-01-21 2 7
2016-01-22 2 7
2016-01-23 2 7
2016-01-24 2 8

Now you can do:

.. ipython:: python
.. code-block:: ipython

df.groupby("group").resample("1D").ffill()
In[1]: df.groupby("group").resample("1D").ffill()
Out[1]:
group val
group date
1 2016-01-03 1 5
2016-01-04 1 5
2016-01-05 1 5
2016-01-06 1 5
2016-01-07 1 5
2016-01-08 1 5
2016-01-09 1 5
2016-01-10 1 6
2 2016-01-17 2 7
2016-01-18 2 7
2016-01-19 2 7
2016-01-20 2 7
2016-01-21 2 7
2016-01-22 2 7
2016-01-23 2 7
2016-01-24 2 8

.. _whatsnew_0181.enhancements.method_chain:

Expand Down