Skip to content
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -848,6 +848,7 @@ Groupby/resample/rolling
- Bug in :meth:`DataFrameGroupBy.agg` with timezone-aware datetime64 column incorrectly casting results to the original dtype (:issue:`29641`)
- Bug in :meth:`DataFrame.groupby` when using axis=1 and having a single level columns index (:issue:`30208`)
- Bug in :meth:`DataFrame.groupby` when using nunique on axis=1 (:issue:`30253`)
- Bug in :meth:`GroupBy.quantile` with multiple list-like q value and integer column names (:issue:`30289`)

Reshaping
^^^^^^^^^
Expand Down
25 changes: 13 additions & 12 deletions pandas/core/groupby/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1937,21 +1937,22 @@ def post_processor(vals: np.ndarray, inference: Optional[Type]) -> np.ndarray:
# >>> result.stack(0).loc[pd.IndexSlice[:, ..., q], :]
# but this hits https://github.com/pandas-dev/pandas/issues/10710
# which doesn't reorder the list-like `q` on the inner level.
order = np.roll(list(range(result.index.nlevels)), -1)
result = result.reorder_levels(order)
result = result.reindex(q, level=-1)
order = list(range(1, result.index.nlevels)) + [0]

# temporarily saves the index names
index_names = np.array(result.index.names)

# fix order.
hi = len(q) * self.ngroups
arr = np.arange(0, hi, self.ngroups)
arrays = []
# set index names to positions to avoid confusion
result.index.names = np.arange(len(index_names))

# place quantiles on the inside
result = result.reorder_levels(order)

for i in range(self.ngroups):
arr2 = arr + i
arrays.append(arr2)
# restore the index names in order
result.index.names = index_names[order]

indices = np.concatenate(arrays)
assert len(indices) == len(result)
# reorder rows to keep things sorted
indices = np.arange(len(result)).reshape([len(q), self.ngroups]).T.flatten()
return result.take(indices)

@Substitution(name="groupby")
Expand Down
16 changes: 16 additions & 0 deletions pandas/tests/groupby/test_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -1398,6 +1398,22 @@ def test_quantile_array_multiple_levels():
tm.assert_frame_equal(result, expected)


def test_groupby_quantile_with_arraylike_q_and_int_columns():
# GH30289
df = pd.DataFrame(np.array([2 * [_ % 4] for _ in range(10)]), columns=[0, 1])

quantiles = [0.5, 0.6]
expected_index = pd.MultiIndex.from_product(
[[0, 1, 2, 3], [0.5, 0.6]], names=[0, None]
)

expected_values = [float(x) for x in [0, 0, 1, 1, 2, 2, 3, 3]]
expected = pd.DataFrame(expected_values, index=expected_index, columns=[1])
result = df.groupby(0).quantile(quantiles)

tm.assert_frame_equal(result, expected)


def test_quantile_raises():
df = pd.DataFrame(
[["foo", "a"], ["foo", "b"], ["foo", "c"]], columns=["key", "val"]
Expand Down