- 
          
- 
                Notifications
    You must be signed in to change notification settings 
- Fork 19.2k
Description
- 
[ x] I have checked that this issue has not already been reported. 
- 
[ x] I have confirmed this bug exists on the latest version of pandas. 
- 
(optional) I have confirmed this bug exists on the master branch of pandas. 
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
# Your code here
import pandas as pd
Y0=array([[0.-20.j        , 0. +0.j ],
                [0. +0.j        , 0.-12.j  ]])
Y0df=pd.DataFrame(Y0)
print(Y0df.to_latex(header=False,index=False,decimal=','), file=open('Y0.tex', 'w'))Problem description
The contence of Y0.tex is shown below with only the real part having the correct decimal symbol.
\begin{tabular}{rr}
\toprule
0,000000-20.000000j &   0,000000+0.000000j \
0,000000+0.000000j &  0,000000-12.000000j \
\bottomrule
\end{tabular}
Expected Output
\begin{tabular}{rr}
\toprule
0,000000-20,000000j &   0,000000+0,000000j \
0,000000+0.000000j &  0,000000-12,000000j \
\bottomrule
\end{tabular}
Desired Output
#instead of using 'decimal' an 'use_numprint=True' would be nicer to allow for custom customisation within LaTeX, which would ideally produce the following output
%uncomment the following line if not already defined
%\newcommand{\np}[2][]{\numprint[#1]{#2}}
\begin{tabular}{rr}
\toprule
\np{0.000000}-\np{20.000000}j &   \np{0.000000}+\np{0.000000}j \
\np{0.000000}+\np{0.000000}j &  \np{0.000000}-\np{12.000000}j \
\bottomrule
\end{tabular}
Output of pd.show_versions()
INSTALLED VERSIONS
commit           : db08276
python           : 3.8.5.final.0
python-bits      : 64
OS               : Windows
OS-release       : 10
Version          : 10.0.18362
machine          : AMD64
processor        : Intel64 Family 6 Model 94 Stepping 3, GenuineIntel
byteorder        : little
LC_ALL           : None
LANG             : en
LOCALE           : English_South Africa.1252
pandas           : 1.1.3
numpy            : 1.19.2
pytz             : 2020.1
dateutil         : 2.8.1
pip              : 20.2.4
setuptools       : 50.3.1.post20201107
Cython           : 0.29.21
pytest           : 6.1.1
hypothesis       : None
sphinx           : 3.2.1
blosc            : None
feather          : None
xlsxwriter       : 1.3.7
lxml.etree       : 4.6.1
html5lib         : 1.1
pymysql          : None
psycopg2         : None
jinja2           : 2.11.2
IPython          : 7.19.0
pandas_datareader: None
bs4              : 4.9.3
bottleneck       : 1.3.2
fsspec           : 0.8.3
fastparquet      : None
gcsfs            : None
matplotlib       : 3.3.2
numexpr          : 2.7.1
odfpy            : None
openpyxl         : 3.0.5
pandas_gbq       : None
pyarrow          : None
pytables         : None
pyxlsb           : None
s3fs             : None
scipy            : 1.5.2
sqlalchemy       : 1.3.20
tables           : 3.6.1
tabulate         : None
xarray           : None
xlrd             : 1.2.0
xlwt             : 1.3.0
numba            : 0.51.2