-
-
Notifications
You must be signed in to change notification settings - Fork 19.4k
Closed
Labels
CategoricalCategorical Data TypeCategorical Data TypeNeeds TestsUnit test(s) needed to prevent regressionsUnit test(s) needed to prevent regressionsgood first issue
Description
When using melt, I'd expect the type of the columns specified as id_vars to be preserved.
Categorical types seem to be lost in the process:
import pandas as pd
data = pd.DataFrame({'A': [1,2], 'B': pd.Categorical(['X', 'Y'])})
print(data)
print(data.info())
melted = pd.melt(data, ['B'], ['A'])
print(melted)
print(melted.info())shows:
None
B variable value
0 X A 1
1 Y A 2
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 3 columns):
B 2 non-null object
variable 2 non-null object
value 2 non-null int64
dtypes: int64(1), object(2)
Output of pd.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.5.3.final.0
python-bits: 64
OS: Linux
OS-release: 4.9.0-2-amd64
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.19.2
nose: 1.3.7
pip: None
setuptools: 33.1.1
Cython: 0.25.2
numpy: 1.12.0
scipy: 0.18.1
statsmodels: 0.8.0.dev0+c906881
xarray: None
IPython: 5.1.0
sphinx: 1.4.9
patsy: 0.4.1+dev
dateutil: 2.5.3
pytz: 2016.7
blosc: None
bottleneck: None
tables: 3.3.0
numexpr: 2.6.1
matplotlib: 2.0.0
openpyxl: 2.3.0
xlrd: 1.0.0
xlwt: None
xlsxwriter: None
lxml: 3.7.3
bs4: None
html5lib: None
httplib2: 0.9.2
apiclient: None
sqlalchemy: 1.1.6
pymysql: None
psycopg2: None
jinja2: 2.9.5
boto: None
pandas_datareader: None
Etherian, yamad and amueller
Metadata
Metadata
Assignees
Labels
CategoricalCategorical Data TypeCategorical Data TypeNeeds TestsUnit test(s) needed to prevent regressionsUnit test(s) needed to prevent regressionsgood first issue