@@ -1779,7 +1779,7 @@ def sort_index(self, axis=0, level=None, ascending=True, inplace=False,
17791779 avoid duplicating data
17801780 method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}, optional
17811781 method to use for filling holes in reindexed DataFrame.
1782- Please note: this is only applicable to DataFrames/Series with a
1782+ Please note: this is only applicable to DataFrames/Series with a
17831783 monotonically increasing/decreasing index.
17841784 * default: don't fill gaps
17851785 * pad / ffill: propagate last valid observation forward to next valid
@@ -1822,7 +1822,7 @@ def sort_index(self, axis=0, level=None, ascending=True, inplace=False,
18221822
18231823 Create a new index and reindex the dataframe. By default
18241824 values in the new index that do not have corresponding
1825- records in the dataframe are assigned ``NaN``.
1825+ records in the dataframe are assigned ``NaN``.
18261826
18271827 >>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10',
18281828 ... 'Chrome']
@@ -1836,8 +1836,8 @@ def sort_index(self, axis=0, level=None, ascending=True, inplace=False,
18361836
18371837 We can fill in the missing values by passing a value to
18381838 the keyword ``fill_value``. Because the index is not monotonically
1839- increasing or decreasing, we cannot use arguments to the keyword
1840- ``method`` to fill the ``NaN`` values.
1839+ increasing or decreasing, we cannot use arguments to the keyword
1840+ ``method`` to fill the ``NaN`` values.
18411841
18421842 >>> df.reindex(new_index, fill_value=0)
18431843 http_status response_time
@@ -1855,8 +1855,8 @@ def sort_index(self, axis=0, level=None, ascending=True, inplace=False,
18551855 IE10 404 0.08
18561856 Chrome 200 0.02
18571857
1858- To further illustrate the filling functionality in
1859- ``reindex``, we will create a dataframe with a
1858+ To further illustrate the filling functionality in
1859+ ``reindex``, we will create a dataframe with a
18601860 monotonically increasing index (for example, a sequence
18611861 of dates).
18621862
@@ -1873,7 +1873,7 @@ def sort_index(self, axis=0, level=None, ascending=True, inplace=False,
18731873 2010-01-06 88
18741874
18751875 Suppose we decide to expand the dataframe to cover a wider
1876- date range.
1876+ date range.
18771877
18781878 >>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
18791879 >>> df2.reindex(date_index2)
@@ -1890,10 +1890,10 @@ def sort_index(self, axis=0, level=None, ascending=True, inplace=False,
18901890 2010-01-07 NaN
18911891
18921892 The index entries that did not have a value in the original data frame
1893- (for example, '2009-12-29') are by default filled with ``NaN``.
1893+ (for example, '2009-12-29') are by default filled with ``NaN``.
18941894 If desired, we can fill in the missing values using one of several
1895- options.
1896-
1895+ options.
1896+
18971897 For example, to backpropagate the last valid value to fill the ``NaN``
18981898 values, pass ``bfill`` as an argument to the ``method`` keyword.
18991899
@@ -1911,7 +1911,7 @@ def sort_index(self, axis=0, level=None, ascending=True, inplace=False,
19111911 2010-01-07 NaN
19121912
19131913 Please note that the ``NaN`` value present in the original dataframe
1914- (at index value 2010-01-03) will not be filled by any of the
1914+ (at index value 2010-01-03) will not be filled by any of the
19151915 value propagation schemes. This is because filling while reindexing
19161916 does not look at dataframe values, but only compares the original and
19171917 desired indexes. If you do want to fill in the ``NaN`` values present
0 commit comments