Skip to content

Conversation

@vladii
Copy link

@vladii vladii commented Jul 15, 2015

No description provided.

@mccheah
Copy link

mccheah commented Jul 15, 2015

We shouldn't PR into master - use #13 as an example of what to do

@mccheah mccheah closed this Jul 15, 2015
mingyukim pushed a commit that referenced this pull request Jul 23, 2015
Updated Java, Scala, Python, and R.

Author: Reynold Xin <[email protected]>
Author: Shivaram Venkataraman <[email protected]>

Closes apache#5996 from rxin/groupby-retain and squashes the following commits:

aac7119 [Reynold Xin] Merge branch 'groupby-retain' of github.com:rxin/spark into groupby-retain
f6858f6 [Reynold Xin] Merge branch 'master' into groupby-retain
5f923c0 [Reynold Xin] Merge pull request #15 from shivaram/sparkr-groupby-retrain
c1de670 [Shivaram Venkataraman] Revert workaround in SparkR to retain grouped cols Based on reverting code added in commit amplab-extras@9a6be74
b8b87e1 [Reynold Xin] Fixed DataFrameJoinSuite.
d910141 [Reynold Xin] Updated rest of the files
1e6e666 [Reynold Xin] [SPARK-7462] By default retain group by columns in aggregate

(cherry picked from commit 0a4844f)
Signed-off-by: Reynold Xin <[email protected]>
mccheah pushed a commit that referenced this pull request Jul 30, 2015
… driver to the block generator

First step for [SPARK-7398](https://issues.apache.org/jira/browse/SPARK-7398).

tdas huitseeker

Author: Iulian Dragos <[email protected]>
Author: François Garillot <[email protected]>

Closes apache#7471 from dragos/topic/streaming-bp/dynamic-rate and squashes the following commits:

8941cf9 [Iulian Dragos] Renames and other nitpicks.
162d9e5 [Iulian Dragos] Use Reflection for accessing truly private `executor` method and use the listener bus to know when receivers have registered (`onStart` is called before receivers have registered, leading to flaky behavior).
210f495 [Iulian Dragos] Revert "Added a few tests that measure the receiver’s rate."
0c51959 [Iulian Dragos] Added a few tests that measure the receiver’s rate.
261a051 [Iulian Dragos] - removed field to hold the current rate limit in rate limiter - made rate limit a Long and default to Long.MaxValue (consequence of the above) - removed custom `waitUntil` and replaced it by `eventually`
cd1397d [Iulian Dragos] Add a test for the propagation of a new rate limit from driver to receivers.
6369b30 [Iulian Dragos] Merge pull request #15 from huitseeker/SPARK-8975
d15de42 [François Garillot] [SPARK-8975][Streaming] Adds Ratelimiter unit tests w.r.t. spark.streaming.receiver.maxRate
4721c7d [François Garillot] [SPARK-8975][Streaming] Add a mechanism to send a new rate from the driver to the block generator
mccheah pushed a commit that referenced this pull request Jul 30, 2015
…ements the RateController

Based on apache#7471.

- [x] add a test that exercises the publish path from driver to receiver
- [ ] remove Serializable from `RateController` and `RateEstimator`

Author: Iulian Dragos <[email protected]>
Author: François Garillot <[email protected]>

Closes apache#7600 from dragos/topic/streaming-bp/rate-controller and squashes the following commits:

f168c94 [Iulian Dragos] Latest review round.
5125e60 [Iulian Dragos] Fix style.
a2eb3b9 [Iulian Dragos] Merge remote-tracking branch 'upstream/master' into topic/streaming-bp/rate-controller
475e346 [Iulian Dragos] Latest round of reviews.
e9fb45e [Iulian Dragos] - Add a test for checkpointing - fixed serialization for RateController.executionContext
715437a [Iulian Dragos] Review comments and added a `reset` call in ReceiverTrackerTest.
e57c66b [Iulian Dragos] Added a couple of tests for the full scenario from driver to receivers, with several rate updates.
b425d32 [Iulian Dragos] Removed DeveloperAPI, removed rateEstimator field, removed Noop rate estimator, changed logic for initialising rate estimator.
238cfc6 [Iulian Dragos] Merge remote-tracking branch 'upstream/master' into topic/streaming-bp/rate-controller
34a389d [Iulian Dragos] Various style changes and a first test for the rate controller.
d32ca36 [François Garillot] [SPARK-8977][Streaming] Defines the RateEstimator interface, and implements the ReceiverRateController
8941cf9 [Iulian Dragos] Renames and other nitpicks.
162d9e5 [Iulian Dragos] Use Reflection for accessing truly private `executor` method and use the listener bus to know when receivers have registered (`onStart` is called before receivers have registered, leading to flaky behavior).
210f495 [Iulian Dragos] Revert "Added a few tests that measure the receiver’s rate."
0c51959 [Iulian Dragos] Added a few tests that measure the receiver’s rate.
261a051 [Iulian Dragos] - removed field to hold the current rate limit in rate limiter - made rate limit a Long and default to Long.MaxValue (consequence of the above) - removed custom `waitUntil` and replaced it by `eventually`
cd1397d [Iulian Dragos] Add a test for the propagation of a new rate limit from driver to receivers.
6369b30 [Iulian Dragos] Merge pull request #15 from huitseeker/SPARK-8975
d15de42 [François Garillot] [SPARK-8975][Streaming] Adds Ratelimiter unit tests w.r.t. spark.streaming.receiver.maxRate
4721c7d [François Garillot] [SPARK-8975][Streaming] Add a mechanism to send a new rate from the driver to the block generator
buckhx pushed a commit to buckhx/spark that referenced this pull request Apr 13, 2016
…gle batch

## What changes were proposed in this pull request?

This PR support multiple Python UDFs within single batch, also improve the performance.

```python
>>> from pyspark.sql.types import IntegerType
>>> sqlContext.registerFunction("double", lambda x: x * 2, IntegerType())
>>> sqlContext.registerFunction("add", lambda x, y: x + y, IntegerType())
>>> sqlContext.sql("SELECT double(add(1, 2)), add(double(2), 1)").explain(True)
== Parsed Logical Plan ==
'Project [unresolvedalias('double('add(1, 2)), None),unresolvedalias('add('double(2), 1), None)]
+- OneRowRelation$

== Analyzed Logical Plan ==
double(add(1, 2)): int, add(double(2), 1): int
Project [double(add(1, 2))palantir#14,add(double(2), 1)palantir#15]
+- Project [double(add(1, 2))palantir#14,add(double(2), 1)palantir#15]
   +- Project [pythonUDF0#16 AS double(add(1, 2))palantir#14,pythonUDF0#18 AS add(double(2), 1)palantir#15]
      +- EvaluatePython [add(pythonUDF1#17, 1)], [pythonUDF0#18]
         +- EvaluatePython [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17]
            +- OneRowRelation$

== Optimized Logical Plan ==
Project [pythonUDF0#16 AS double(add(1, 2))palantir#14,pythonUDF0#18 AS add(double(2), 1)palantir#15]
+- EvaluatePython [add(pythonUDF1#17, 1)], [pythonUDF0#18]
   +- EvaluatePython [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17]
      +- OneRowRelation$

== Physical Plan ==
WholeStageCodegen
:  +- Project [pythonUDF0#16 AS double(add(1, 2))palantir#14,pythonUDF0#18 AS add(double(2), 1)palantir#15]
:     +- INPUT
+- !BatchPythonEvaluation [add(pythonUDF1#17, 1)], [pythonUDF0#16,pythonUDF1#17,pythonUDF0#18]
   +- !BatchPythonEvaluation [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17]
      +- Scan OneRowRelation[]
```

## How was this patch tested?

Added new tests.

Using the following script to benchmark 1, 2 and 3 udfs,
```
df = sqlContext.range(1, 1 << 23, 1, 4)
double = F.udf(lambda x: x * 2, LongType())
print df.select(double(df.id)).count()
print df.select(double(df.id), double(df.id + 1)).count()
print df.select(double(df.id), double(df.id + 1), double(df.id + 2)).count()
```
Here is the results:

N | Before | After  | speed up
---- |------------ | -------------|------
1 | 22 s | 7 s |  3.1X
2 | 38 s | 13 s | 2.9X
3 | 58 s | 16 s | 3.6X

This benchmark ran locally with 4 CPUs. For 3 UDFs, it launched 12 Python before before this patch, 4 process after this patch. After this patch, it will use less memory for multiple UDFs than before (less buffering).

Author: Davies Liu <[email protected]>

Closes apache#12057 from davies/multi_udfs.
mccheah pushed a commit that referenced this pull request Aug 26, 2019
## What changes were proposed in this pull request?
This PR aims at improving the way physical plans are explained in spark.

Currently, the explain output for physical plan may look very cluttered and each operator's
string representation can be very wide and wraps around in the display making it little
hard to follow. This especially happens when explaining a query 1) Operating on wide tables
2) Has complex expressions etc.

This PR attempts to split the output into two sections. In the header section, we display
the basic operator tree with a number associated with each operator. In this section, we strictly
control what we output for each operator. In the footer section, each operator is verbosely
displayed. Based on the feedback from Maryann, the uncorrelated subqueries (SubqueryExecs) are not included in the main plan. They are printed separately after the main plan and can be
correlated by the originating expression id from its parent plan.

To illustrate, here is a simple plan displayed in old vs new way.

Example query1 :
```
EXPLAIN SELECT key, Max(val) FROM explain_temp1 WHERE key > 0 GROUP BY key HAVING max(val) > 0
```

Old :
```
*(2) Project [key#2, max(val)#15]
+- *(2) Filter (isnotnull(max(val#3)#18) AND (max(val#3)#18 > 0))
   +- *(2) HashAggregate(keys=[key#2], functions=[max(val#3)], output=[key#2, max(val)#15, max(val#3)#18])
      +- Exchange hashpartitioning(key#2, 200)
         +- *(1) HashAggregate(keys=[key#2], functions=[partial_max(val#3)], output=[key#2, max#21])
            +- *(1) Project [key#2, val#3]
               +- *(1) Filter (isnotnull(key#2) AND (key#2 > 0))
                  +- *(1) FileScan parquet default.explain_temp1[key#2,val#3] Batched: true, DataFilters: [isnotnull(key#2), (key#2 > 0)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp1], PartitionFilters: [], PushedFilters: [IsNotNull(key), GreaterThan(key,0)], ReadSchema: struct<key:int,val:int>
```
New :
```
Project (8)
+- Filter (7)
   +- HashAggregate (6)
      +- Exchange (5)
         +- HashAggregate (4)
            +- Project (3)
               +- Filter (2)
                  +- Scan parquet default.explain_temp1 (1)

(1) Scan parquet default.explain_temp1 [codegen id : 1]
Output: [key#2, val#3]

(2) Filter [codegen id : 1]
Input     : [key#2, val#3]
Condition : (isnotnull(key#2) AND (key#2 > 0))

(3) Project [codegen id : 1]
Output    : [key#2, val#3]
Input     : [key#2, val#3]

(4) HashAggregate [codegen id : 1]
Input: [key#2, val#3]

(5) Exchange
Input: [key#2, max#11]

(6) HashAggregate [codegen id : 2]
Input: [key#2, max#11]

(7) Filter [codegen id : 2]
Input     : [key#2, max(val)#5, max(val#3)#8]
Condition : (isnotnull(max(val#3)#8) AND (max(val#3)#8 > 0))

(8) Project [codegen id : 2]
Output    : [key#2, max(val)#5]
Input     : [key#2, max(val)#5, max(val#3)#8]
```

Example Query2 (subquery):
```
SELECT * FROM   explain_temp1 WHERE  KEY = (SELECT Max(KEY) FROM   explain_temp2 WHERE  KEY = (SELECT Max(KEY) FROM   explain_temp3 WHERE  val > 0) AND val = 2) AND val > 3
```
Old:
```
*(1) Project [key#2, val#3]
+- *(1) Filter (((isnotnull(KEY#2) AND isnotnull(val#3)) AND (KEY#2 = Subquery scalar-subquery#39)) AND (val#3 > 3))
   :  +- Subquery scalar-subquery#39
   :     +- *(2) HashAggregate(keys=[], functions=[max(KEY#26)], output=[max(KEY)#45])
   :        +- Exchange SinglePartition
   :           +- *(1) HashAggregate(keys=[], functions=[partial_max(KEY#26)], output=[max#47])
   :              +- *(1) Project [key#26]
   :                 +- *(1) Filter (((isnotnull(KEY#26) AND isnotnull(val#27)) AND (KEY#26 = Subquery scalar-subquery#38)) AND (val#27 = 2))
   :                    :  +- Subquery scalar-subquery#38
   :                    :     +- *(2) HashAggregate(keys=[], functions=[max(KEY#28)], output=[max(KEY)#43])
   :                    :        +- Exchange SinglePartition
   :                    :           +- *(1) HashAggregate(keys=[], functions=[partial_max(KEY#28)], output=[max#49])
   :                    :              +- *(1) Project [key#28]
   :                    :                 +- *(1) Filter (isnotnull(val#29) AND (val#29 > 0))
   :                    :                    +- *(1) FileScan parquet default.explain_temp3[key#28,val#29] Batched: true, DataFilters: [isnotnull(val#29), (val#29 > 0)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp3], PartitionFilters: [], PushedFilters: [IsNotNull(val), GreaterThan(val,0)], ReadSchema: struct<key:int,val:int>
   :                    +- *(1) FileScan parquet default.explain_temp2[key#26,val#27] Batched: true, DataFilters: [isnotnull(key#26), isnotnull(val#27), (val#27 = 2)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp2], PartitionFilters: [], PushedFilters: [IsNotNull(key), IsNotNull(val), EqualTo(val,2)], ReadSchema: struct<key:int,val:int>
   +- *(1) FileScan parquet default.explain_temp1[key#2,val#3] Batched: true, DataFilters: [isnotnull(key#2), isnotnull(val#3), (val#3 > 3)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp1], PartitionFilters: [], PushedFilters: [IsNotNull(key), IsNotNull(val), GreaterThan(val,3)], ReadSchema: struct<key:int,val:int>
```
New:
```
Project (3)
+- Filter (2)
   +- Scan parquet default.explain_temp1 (1)

(1) Scan parquet default.explain_temp1 [codegen id : 1]
Output: [key#2, val#3]

(2) Filter [codegen id : 1]
Input     : [key#2, val#3]
Condition : (((isnotnull(KEY#2) AND isnotnull(val#3)) AND (KEY#2 = Subquery scalar-subquery#23)) AND (val#3 > 3))

(3) Project [codegen id : 1]
Output    : [key#2, val#3]
Input     : [key#2, val#3]
===== Subqueries =====

Subquery:1 Hosting operator id = 2 Hosting Expression = Subquery scalar-subquery#23
HashAggregate (9)
+- Exchange (8)
   +- HashAggregate (7)
      +- Project (6)
         +- Filter (5)
            +- Scan parquet default.explain_temp2 (4)

(4) Scan parquet default.explain_temp2 [codegen id : 1]
Output: [key#26, val#27]

(5) Filter [codegen id : 1]
Input     : [key#26, val#27]
Condition : (((isnotnull(KEY#26) AND isnotnull(val#27)) AND (KEY#26 = Subquery scalar-subquery#22)) AND (val#27 = 2))

(6) Project [codegen id : 1]
Output    : [key#26]
Input     : [key#26, val#27]

(7) HashAggregate [codegen id : 1]
Input: [key#26]

(8) Exchange
Input: [max#35]

(9) HashAggregate [codegen id : 2]
Input: [max#35]

Subquery:2 Hosting operator id = 5 Hosting Expression = Subquery scalar-subquery#22
HashAggregate (15)
+- Exchange (14)
   +- HashAggregate (13)
      +- Project (12)
         +- Filter (11)
            +- Scan parquet default.explain_temp3 (10)

(10) Scan parquet default.explain_temp3 [codegen id : 1]
Output: [key#28, val#29]

(11) Filter [codegen id : 1]
Input     : [key#28, val#29]
Condition : (isnotnull(val#29) AND (val#29 > 0))

(12) Project [codegen id : 1]
Output    : [key#28]
Input     : [key#28, val#29]

(13) HashAggregate [codegen id : 1]
Input: [key#28]

(14) Exchange
Input: [max#37]

(15) HashAggregate [codegen id : 2]
Input: [max#37]
```

Note:
I opened this PR as a WIP to start getting feedback. I will be on vacation starting tomorrow
would not be able to immediately incorporate the feedback. I will start to
work on them as soon as i can. Also, currently this PR provides a basic infrastructure
for explain enhancement. The details about individual operators will be implemented
in follow-up prs
## How was this patch tested?
Added a new test `explain.sql` that tests basic scenarios. Need to add more tests.

Closes apache#24759 from dilipbiswal/explain_feature.

Authored-by: Dilip Biswal <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants