Skip to content

paiml/paiml-mcp-agent-toolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PMAT - Pragmatic AI Labs Multi-language Agent Toolkit

Documentation Crates.io License: MIT Version

Zero-configuration AI context generation for any codebase. Analyze code quality, complexity, and technical debt across 17+ programming languages with extreme quality enforcement and Toyota Way standards.

📖 https://paiml.github.io/pmat-book/ - Complete documentation, tutorials, and guides


Quick Start

Installation

# Rust (recommended)
cargo install pmat

# macOS/Linux
brew install pmat

# Windows
choco install pmat

# npm (global)
npm install -g pmat-agent

Basic Usage

# Analyze codebase and generate AI-ready context
pmat context

# Analyze complexity
pmat analyze complexity

# Grade technical debt (A+ through F)
pmat analyze tdg

# Find Self-Admitted Technical Debt
pmat analyze satd

# Test suite quality (mutation testing)
pmat mutate --target src/

Git Hooks Setup

Install pre-commit hooks for automatic quality enforcement:

# Install git hooks (bashrs quality, pmat-book validation)
pmat hooks install

# Check hook status
pmat hooks status

# Dry-run to see what would be checked
pmat hooks install --dry-run

Hooks enforce:

  • Bash/Makefile safety (bashrs linting)
  • pmat-book validation (multi-language examples)
  • Documentation accuracy (zero hallucinations)

Features

  • 17+ Languages: Rust, TypeScript, Python, Go, Java, C/C++, Ruby, PHP, Swift, Kotlin, and more
  • AI-Ready Context: Generate deep context for Claude, GPT, and other LLMs
  • Technical Debt Grading (TDG): A+ through F scoring with 6 orthogonal metrics
  • Git-Commit Correlation ✨NEW: Track TDG scores at specific commits for quality archaeology
  • Semantic Code Search: Natural language code discovery with hybrid search
  • Quality Gates: Pre-commit hooks, CI/CD integration, mutation testing
  • MCP Integration: 19 tools for Claude Code, Cline, and other MCP clients
  • Zero Configuration: Works out of the box on any codebase

Documentation

📖 PMAT Book - Complete guide with tutorials

Key chapters:


Examples

# Generate context for Claude/GPT
pmat context --output context.md --format llm-optimized

# Analyze TypeScript project
pmat analyze complexity --language typescript

# Technical debt grading with components
pmat analyze tdg --include-components

# Semantic search (natural language)
pmat embed sync ./src
pmat semantic search "error handling patterns"

# Validate documentation for hallucinations
pmat validate-readme --targets README.md

Mutation Testing

Evaluate test suite quality by introducing code mutations and checking if tests detect them.

# Basic mutation testing
pmat mutate --target src/lib.rs

# With quality gate (fail if score < 85%)
pmat mutate --target src/ --threshold 85

# Failures only (CI/CD optimization)
pmat mutate --target src/ --failures-only

# JSON output for integration
pmat mutate --target src/ --output-format json > results.json

Mutation Score = (Killed Mutants / Total Valid Mutants) × 100%

Supported Languages: Rust, Python, TypeScript, JavaScript, Go, C++

Key Features:

  • Multi-language mutation operators (arithmetic, comparison, logical, boundary)
  • CI/CD integration (GitHub Actions, GitLab CI, Jenkins)
  • Performance optimization (parallel execution, differential testing)
  • Quality gates with configurable thresholds

Documentation:

Example Projects:


TDG Enforcement System (v2.180.0+)

Zero-regression quality enforcement across local development, git workflows, and CI/CD pipelines.

Quick Start

# 1. Create quality baseline
pmat tdg baseline create --output .pmat/tdg-baseline.json --path .

# 2. Install git hooks (optional)
pmat hooks install --tdg-enforcement

# 3. Check for regressions
pmat tdg check-regression \
  --baseline .pmat/tdg-baseline.json \
  --path . \
  --max-score-drop 5.0 \
  --fail-on-regression

# 4. Enforce quality standards for new code
pmat tdg check-quality \
  --path . \
  --min-grade B+ \
  --new-files-only \
  --fail-on-violation

Features

Baseline System:

  • Blake3 content-hash based deduplication
  • Project-wide quality snapshots
  • Delta detection (improved, regressed, unchanged files)

Quality Gates:

  • Regression detection (prevents quality degradation)
  • Minimum grade enforcement (ensures new code quality)
  • Language-specific thresholds

Git Hooks:

  • Pre-commit quality checks
  • Post-commit baseline updates
  • Configurable enforcement modes (strict, warning, disabled)

CI/CD Templates:

  • GitHub Actions workflow
  • GitLab CI pipeline
  • Jenkins declarative pipeline

Configuration

Create .pmat/tdg-rules.toml:

[quality_gates]
rust_min_grade = "A"
python_min_grade = "B+"
max_score_drop = 5.0
mode = "strict"  # strict, warning, or disabled

[baseline]
baseline_path = ".pmat/tdg-baseline.json"
auto_update_on_main = true

CI/CD Integration

GitHub Actions:

cp templates/ci/github-actions-tdg.yml .github/workflows/tdg-quality.yml

GitLab CI:

cp templates/ci/gitlab-ci-tdg.yml .gitlab-ci.yml

Jenkins:

cp templates/ci/Jenkinsfile-tdg Jenkinsfile

See Complete Guide: docs/guides/ci-cd-tdg-integration.md


Git-Commit Correlation (v2.179.0+)

Track Technical Debt Grading (TDG) scores at specific git commits for "quality archaeology" workflows.

# Analyze with git context
pmat tdg server/src/lib.rs --with-git-context

# Query specific commit
pmat tdg history --commit v2.178.0

# History since reference
pmat tdg history --since HEAD~10

# Commit range
pmat tdg history --range v2.177.0..v2.178.0

# Filter by file
pmat tdg history --path server/src/lib.rs --since HEAD~5

# JSON output for scripting
pmat tdg history --commit 60125a0 --format json

Use Cases:

  • Quality Archaeology: Find which commit broke quality
  • Release Tracking: Compare quality between releases
  • Regression Detection: Identify quality drops over time
  • Developer Metrics: Track quality attribution

Example Workflows:

# Find when quality dropped below B+
pmat tdg history --since HEAD~50 --format json | \
  jq '.history[] | select(.score.grade | test("C|D|F"))'

# Quality delta between releases
pmat tdg history --range v2.177.0..v2.178.0

# Per-file quality trend
pmat tdg history --path src/lib.rs --since HEAD~20

Features:

  • Tag resolution support (e.g., --commit v2.178.0)
  • MCP integration (with_git_context: true parameter)
  • Zero performance overhead (<1% analysis time)
  • Backward compatible (git context is optional)

MCP Integration

PMAT provides 19 MCP tools for AI agents:

# Start MCP server
pmat mcp

# Use with Claude Code, Cline, or other MCP clients

Tools include: context generation, complexity analysis, TDG scoring, semantic search, code clustering, documentation validation, and more.

See MCP Tools Documentation for details.


Project Info

Built by: Pragmatic AI Labs
License: MIT
Repository: github.com/paiml/paiml-mcp-agent-toolkit
Issues: GitHub Issues

Current Version: v2.167.0 (Sprint 44 - Coverage Remediation)


Contributing

See ROADMAP.md for project status and future plans.

Quality Standards:

  • EXTREME TDD (RED → GREEN → REFACTOR)
  • 85%+ code coverage
  • Five Whys root cause analysis
  • Toyota Way principles (Jidoka, Genchi Genbutsu, Kaizen)
  • Zero tolerance for defects