Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update all dependencies #459

Merged
merged 1 commit into from
Jan 24, 2025
Merged

Update all dependencies #459

merged 1 commit into from
Jan 24, 2025

Conversation

renovate[bot]
Copy link
Contributor

@renovate renovate bot commented Dec 16, 2024

This PR contains the following updates:

Package Type Update Change Age Adoption Passing Confidence
actions/upload-artifact action minor v4.4.3 -> v4.6.0 age adoption passing confidence
certifi dependencies minor 2024.8.30 -> 2024.12.14 age adoption passing confidence
cgr.dev/chainguard/python final digest 2d14d05 -> 578490b
cgr.dev/chainguard/python stage digest 912ce75 -> 1d2375e
fastapi (changelog) dependencies patch 0.115.6 -> 0.115.7 age adoption passing confidence
github/codeql-action action minor v3.27.9 -> v3.28.4 age adoption passing confidence
numpy (changelog) dependencies patch 2.2.0 -> 2.2.2 age adoption passing confidence
peter-evans/create-pull-request action patch v7.0.5 -> v7.0.6 age adoption passing confidence
pydantic (changelog) dependencies patch 2.10.3 -> 2.10.6 age adoption passing confidence
sqlalchemy (changelog) dependencies patch 2.0.36 -> 2.0.37 age adoption passing confidence
starlette (changelog) dependencies minor 0.41.3 -> 0.45.2 age adoption passing confidence
stefanzweifel/git-auto-commit-action action minor v5.0.1 -> v5.1.0 age adoption passing confidence
step-security/harden-runner action patch v2.10.2 -> v2.10.4 age adoption passing confidence
uvicorn (changelog) dependencies minor 0.32.1 -> 0.34.0 age adoption passing confidence

Release Notes

actions/upload-artifact (actions/upload-artifact)

v4.6.0

Compare Source

What's Changed

Full Changelog: actions/upload-artifact@v4...v4.6.0

v4.5.0

Compare Source

certifi/python-certifi (certifi)

v2024.12.14

Compare Source

fastapi/fastapi (fastapi)

v0.115.7

Compare Source

Upgrades
Refactors
Docs
Translations
Internal
github/codeql-action (github/codeql-action)

v3.28.4

Compare Source

v3.28.3

Compare Source

v3.28.2

Compare Source

CodeQL Action Changelog

See the releases page for the relevant changes to the CodeQL CLI and language packs.

3.28.2 - 21 Jan 2025

No user facing changes.

See the full CHANGELOG.md for more information.

v3.28.1

Compare Source

CodeQL Action Changelog

See the releases page for the relevant changes to the CodeQL CLI and language packs.

3.28.1 - 10 Jan 2025
  • CodeQL Action v2 is now deprecated, and is no longer updated or supported. For better performance, improved security, and new features, upgrade to v3. For more information, see this changelog post. #​2677
  • Update default CodeQL bundle version to 2.20.1. #​2678

See the full CHANGELOG.md for more information.

v3.28.0

Compare Source

CodeQL Action Changelog

See the releases page for the relevant changes to the CodeQL CLI and language packs.

Note that the only difference between v2 and v3 of the CodeQL Action is the node version they support, with v3 running on node 20 while we continue to release v2 to support running on node 16. For example 3.22.11 was the first v3 release and is functionally identical to 2.22.11. This approach ensures an easy way to track exactly which features are included in different versions, indicated by the minor and patch version numbers.

3.28.0 - 20 Dec 2024
  • Bump the minimum CodeQL bundle version to 2.15.5. #​2655
  • Don't fail in the unusual case that a file is on the search path. #​2660.

See the full CHANGELOG.md for more information.

numpy/numpy (numpy)

v2.2.2: 2.2.2 (Jan 18, 2025)

Compare Source

NumPy 2.2.2 Release Notes

NumPy 2.2.2 is a patch release that fixes bugs found after the 2.2.1
release. The number of typing fixes/updates is notable. This release
supports Python versions 3.10-3.13.

Contributors

A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Alicia Boya García +
  • Charles Harris
  • Joren Hammudoglu
  • Kai Germaschewski +
  • Nathan Goldbaum
  • PTUsumit +
  • Rohit Goswami
  • Sebastian Berg

Pull requests merged

A total of 16 pull requests were merged for this release.

  • #​28050: MAINT: Prepare 2.2.x for further development
  • #​28055: TYP: fix void arrays not accepting str keys in __setitem__
  • #​28066: TYP: fix unnecessarily broad integer binop return types (#​28065)
  • #​28112: TYP: Better ndarray binop return types for float64 &...
  • #​28113: TYP: Return the correct bool from issubdtype
  • #​28114: TYP: Always accept date[time] in the datetime64 constructor
  • #​28120: BUG: Fix auxdata initialization in ufunc slow path
  • #​28131: BUG: move reduction initialization to ufunc initialization
  • #​28132: TYP: Fix interp to accept and return scalars
  • #​28137: BUG: call PyType_Ready in f2py to avoid data races
  • #​28145: BUG: remove unnecessary call to PyArray_UpdateFlags
  • #​28160: BUG: Avoid data race in PyArray_CheckFromAny_int
  • #​28175: BUG: Fix f2py directives and --lower casing
  • #​28176: TYP: Fix overlapping overloads issue in 2->1 ufuncs
  • #​28177: TYP: preserve shape-type in ndarray.astype()
  • #​28178: TYP: Fix missing and spurious top-level exports

Checksums

MD5
749cb2adf8043551aae22bbf0ed3130a  numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
bc79fa2e44316b7ce9bacb48a993ed91  numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
c6b2caa2bbb645b5950dccb77efb1dbb  numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
8c410efac169af880cacbbac8a731658  numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
21d165669635a9b680d03b0b4e7f5b98  numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a34ef5e7c967136fdc59c822e99f87d6  numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a81749effc5160ff8dde7eb2ebe868c4  numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
546612d82fae082697879aaf2b985b1b  numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
d874e626f58175ad603cb68fda2a4e28  numpy-2.2.2-cp310-cp310-win32.whl
20564a5caeb621061267f9d80c1e7ed0  numpy-2.2.2-cp310-cp310-win_amd64.whl
ef5336ddae73feef891844a205f89b15  numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
7a0c8804cb6ebca82b1cf3063b410687  numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
1682639d0420a532f8894c4a8685b23d  numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
d33d53efc5744b577cb8a6ac9971cfdb  numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
c85b92e2ed7ef0eaeb15909ad73aea22  numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
efa1a587f607a37336c477bed977ea64  numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e0effe9902e262704a115c6f7095daf7  numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
425e0cebeb1c2c91bba42ae195836268  numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
57121319a2fbb76eed4b268282ed668e  numpy-2.2.2-cp311-cp311-win32.whl
fdb54e7345ff657d208fbb52469a5861  numpy-2.2.2-cp311-cp311-win_amd64.whl
bdf299e0abc45b5c5113a1cc5505636a  numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
30c25784c07965592cf88104b6c02508  numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
65e630a0de5403c41a0083198bc14442  numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
6d9f50717e7b40f1ebdf139f83cc7504  numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
6b092a9280ada70482d44f538752fc0b  numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9c273da8438391eab30f6c1c4898be5d  numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d619047dcaf041b806a7b59ff0a798d5  numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
fa5d0d979104456d7c43a183223c8587  numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
3b8689aedff5037cad85b018e2d5e43a  numpy-2.2.2-cp312-cp312-win32.whl
a2340ff05cae7e09f63bfcfd4e75ea87  numpy-2.2.2-cp312-cp312-win_amd64.whl
044e86bd65492af34a59e4109fbeed16  numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
7ca0f0e8c8d3d80ec473ec33929c2ae3  numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
4b866ad895e007005afe8a29837cf7d6  numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
2e6247faabf6d0ac0fafaca0bb405ff8  numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
773982551185ae327cdefe416e73acfc  numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1c0ecc958a555a8a95c92c1dd7dc2358  numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9f662eb58b8f711585550d6fdf8afa4f  numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
53471186fc990eb22e82a0512b310438  numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
6b4d65349c74dd91853a7cc6b5c5786e  numpy-2.2.2-cp313-cp313-win32.whl
33dc5bab2d3f752ef00f81021d68cb5a  numpy-2.2.2-cp313-cp313-win_amd64.whl
0acc5069c5ab4fe3ea7c35956636c462  numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
01e3f727594a12eee6d0677113525b96  numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
7b1ddabcb187b18caa52055bb2b2dc67  numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
a09f5c138ad8c87b9692eea99f344a98  numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
289ec3155aa21c5a161b2d61d2cf3c2d  numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6bb3eb03d400ad708942afbfebd07abc  numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62f8ef2a5c9e76b0e43851a7bb9c0379  numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl
59b4b77118f958dd07484686e82b1e7a  numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl
726b58ec542581c5e46adfd4c5c0fed0  numpy-2.2.2-cp313-cp313t-win32.whl
f2b4eab55a963e8cd4c6c1e573c9a59f  numpy-2.2.2-cp313-cp313t-win_amd64.whl
f6a93eaebee6f9890a4922571141ecb5  numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
fb457bbe2d231e836d2230b06d4706ca  numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
df4c07a48a24621167c12704ba5ac0de  numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0d1108b9060469eb28bb4a4cffa7b98f  numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl
ac108586d3aeab9e2d0134b744763eb9  numpy-2.2.2.tar.gz
SHA256
7079129b64cb78bdc8d611d1fd7e8002c0a2565da6a47c4df8062349fee90e3e  numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
2ec6c689c61df613b783aeb21f945c4cbe6c51c28cb70aae8430577ab39f163e  numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
40c7ff5da22cd391944a28c6a9c638a5eef77fcf71d6e3a79e1d9d9e82752715  numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
995f9e8181723852ca458e22de5d9b7d3ba4da3f11cc1cb113f093b271d7965a  numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
b78ea78450fd96a498f50ee096f69c75379af5138f7881a51355ab0e11286c97  numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3fbe72d347fbc59f94124125e73fc4976a06927ebc503ec5afbfb35f193cd957  numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8e6da5cffbbe571f93588f562ed130ea63ee206d12851b60819512dd3e1ba50d  numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
09d6a2032faf25e8d0cadde7fd6145118ac55d2740132c1d845f98721b5ebcfd  numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
159ff6ee4c4a36a23fe01b7c3d07bd8c14cc433d9720f977fcd52c13c0098160  numpy-2.2.2-cp310-cp310-win32.whl
64bd6e1762cd7f0986a740fee4dff927b9ec2c5e4d9a28d056eb17d332158014  numpy-2.2.2-cp310-cp310-win_amd64.whl
642199e98af1bd2b6aeb8ecf726972d238c9877b0f6e8221ee5ab945ec8a2189  numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
6d9fc9d812c81e6168b6d405bf00b8d6739a7f72ef22a9214c4241e0dc70b323  numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
c7d1fd447e33ee20c1f33f2c8e6634211124a9aabde3c617687d8b739aa69eac  numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
451e854cfae0febe723077bd0cf0a4302a5d84ff25f0bfece8f29206c7bed02e  numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
bd249bc894af67cbd8bad2c22e7cbcd46cf87ddfca1f1289d1e7e54868cc785c  numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
02935e2c3c0c6cbe9c7955a8efa8908dd4221d7755644c59d1bba28b94fd334f  numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a972cec723e0563aa0823ee2ab1df0cb196ed0778f173b381c871a03719d4826  numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
d6d6a0910c3b4368d89dde073e630882cdb266755565155bc33520283b2d9df8  numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
860fd59990c37c3ef913c3ae390b3929d005243acca1a86facb0773e2d8d9e50  numpy-2.2.2-cp311-cp311-win32.whl
da1eeb460ecce8d5b8608826595c777728cdf28ce7b5a5a8c8ac8d949beadcf2  numpy-2.2.2-cp311-cp311-win_amd64.whl
ac9bea18d6d58a995fac1b2cb4488e17eceeac413af014b1dd26170b766d8467  numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
23ae9f0c2d889b7b2d88a3791f6c09e2ef827c2446f1c4a3e3e76328ee4afd9a  numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
3074634ea4d6df66be04f6728ee1d173cfded75d002c75fac79503a880bf3825  numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
8ec0636d3f7d68520afc6ac2dc4b8341ddb725039de042faf0e311599f54eb37  numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
2ffbb1acd69fdf8e89dd60ef6182ca90a743620957afb7066385a7bbe88dc748  numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0349b025e15ea9d05c3d63f9657707a4e1d471128a3b1d876c095f328f8ff7f0  numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
463247edcee4a5537841d5350bc87fe8e92d7dd0e8c71c995d2c6eecb8208278  numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
9dd47ff0cb2a656ad69c38da850df3454da88ee9a6fde0ba79acceee0e79daba  numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
4525b88c11906d5ab1b0ec1f290996c0020dd318af8b49acaa46f198b1ffc283  numpy-2.2.2-cp312-cp312-win32.whl
5acea83b801e98541619af398cc0109ff48016955cc0818f478ee9ef1c5c3dcb  numpy-2.2.2-cp312-cp312-win_amd64.whl
b208cfd4f5fe34e1535c08983a1a6803fdbc7a1e86cf13dd0c61de0b51a0aadc  numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
d0bbe7dd86dca64854f4b6ce2ea5c60b51e36dfd597300057cf473d3615f2369  numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
22ea3bb552ade325530e72a0c557cdf2dea8914d3a5e1fecf58fa5dbcc6f43cd  numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
128c41c085cab8a85dc29e66ed88c05613dccf6bc28b3866cd16050a2f5448be  numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
250c16b277e3b809ac20d1f590716597481061b514223c7badb7a0f9993c7f84  numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0c8854b09bc4de7b041148d8550d3bd712b5c21ff6a8ed308085f190235d7ff  numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b6fb9c32a91ec32a689ec6410def76443e3c750e7cfc3fb2206b985ffb2b85f0  numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
57b4012e04cc12b78590a334907e01b3a85efb2107df2b8733ff1ed05fce71de  numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
4dbd80e453bd34bd003b16bd802fac70ad76bd463f81f0c518d1245b1c55e3d9  numpy-2.2.2-cp313-cp313-win32.whl
5a8c863ceacae696aff37d1fd636121f1a512117652e5dfb86031c8d84836369  numpy-2.2.2-cp313-cp313-win_amd64.whl
b3482cb7b3325faa5f6bc179649406058253d91ceda359c104dac0ad320e1391  numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
9491100aba630910489c1d0158034e1c9a6546f0b1340f716d522dc103788e39  numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
41184c416143defa34cc8eb9d070b0a5ba4f13a0fa96a709e20584638254b317  numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
7dca87ca328f5ea7dafc907c5ec100d187911f94825f8700caac0b3f4c384b49  numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
0bc61b307655d1a7f9f4b043628b9f2b721e80839914ede634e3d485913e1fb2  numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9fad446ad0bc886855ddf5909cbf8cb5d0faa637aaa6277fb4b19ade134ab3c7  numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
149d1113ac15005652e8d0d3f6fd599360e1a708a4f98e43c9c77834a28238cb  numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl
106397dbbb1896f99e044efc90360d098b3335060375c26aa89c0d8a97c5f648  numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl
0eec19f8af947a61e968d5429f0bd92fec46d92b0008d0a6685b40d6adf8a4f4  numpy-2.2.2-cp313-cp313t-win32.whl
97b974d3ba0fb4612b77ed35d7627490e8e3dff56ab41454d9e8b23448940576  numpy-2.2.2-cp313-cp313t-win_amd64.whl
b0531f0b0e07643eb089df4c509d30d72c9ef40defa53e41363eca8a8cc61495  numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e9e82dcb3f2ebbc8cb5ce1102d5f1c5ed236bf8a11730fb45ba82e2841ec21df  numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
e0d4142eb40ca6f94539e4db929410f2a46052a0fe7a2c1c59f6179c39938d2a  numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
356ca982c188acbfa6af0d694284d8cf20e95b1c3d0aefa8929376fea9146f60  numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl
ed6906f61834d687738d25988ae117683705636936cc605be0bb208b23df4d8f  numpy-2.2.2.tar.gz

v2.2.1: 2.2.1 (DEC 21, 2024)

Compare Source

NumPy 2.2.1 Release Notes

NumPy 2.2.1 is a patch release following 2.2.0. It fixes bugs found
after the 2.2.0 release and has several maintenance pins to work around
upstream changes.

There was some breakage in downstream projects following the 2.2.0
release due to updates to NumPy typing. Because of problems due to MyPy
defects, we recommend using basedpyright for type checking, it can be
installed from PyPI. The Pylance extension for Visual Studio Code is
also based on Pyright. Problems that persist when using basedpyright
should be reported as issues on the NumPy github site.

This release supports Python 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Joren Hammudoglu
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Simon Altrogge
  • Thomas A Caswell
  • Warren Weckesser
  • Yang Wang +

Pull requests merged

A total of 12 pull requests were merged for this release.

  • #​27935: MAINT: Prepare 2.2.x for further development
  • #​27950: TEST: cleanups
  • #​27958: BUG: fix use-after-free error in npy_hashtable.cpp (#​27955)
  • #​27959: BLD: add missing include
  • #​27982: BUG:fix compile error libatomic link test to meson.build
  • #​27990: TYP: Fix falsely rejected value types in ndarray.__setitem__
  • #​27991: MAINT: Don't wrap #include <Python.h> with extern "C"
  • #​27993: BUG: Fix segfault in stringdtype lexsort
  • #​28006: MAINT: random: Tweak module code in mtrand.pyx to fix a Cython...
  • #​28007: BUG: Cython API was missing NPY_UINTP.
  • #​28021: CI: pin scipy-doctest to 1.5.1
  • #​28044: TYP: allow None in operand sequence of nditer

Checksums

MD5
d3032be00b974d44aae687fd78a897b4  numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
49863a39471cf191402da96512e52cb6  numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
31c912e2fa723b877f2d710c26332927  numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
95af4f6b620c76f9ccb8c5693c99737d  numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
c1b113ad487a3bece6d7a70e0cf70f17  numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e93369ddbb637d9d5a820b2bb79588c4  numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b3de0a2c345541d2c9a322df360ca497  numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
e3e62b93245d9e37cc03ec3cfaf68118  numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
004063642d3c3792a3f5ff0241a3fa0f  numpy-2.2.1-cp310-cp310-win32.whl
462b0704ebfd79120edfe6431adc57f4  numpy-2.2.1-cp310-cp310-win_amd64.whl
a739a2dfbceaa1140e564424b2a57540  numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
91731d46f4ce4b04db512400f4e76ccb  numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
93f50db664a6986c2ebed3ceb588f7cc  numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
8cc0d82b938d71f45a67c74e07ddc7fd  numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
fc7b253096fc566bbcbadfdf6b034f1b  numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b88238965c708578f2c198d1c6e2cf70  numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df20d649bb023f98e487b229f01e9708  numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
e23d2bfbdb1bd1b2872c9e6e15f64dca  numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
cce4ebb9afc1470db243c2ab4cc6639b  numpy-2.2.1-cp311-cp311-win32.whl
c96783ee8ad6ce1efee94821929a12f5  numpy-2.2.1-cp311-cp311-win_amd64.whl
0b2024655573f96a595c7f5072205e84  numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
22483d8935f5dc128393ad671fde7d8e  numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
61d38533acaa90fb24657f089d177a6c  numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
ecd4289c703356f5b4fd7e440bf94ce8  numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
a05208461ea09079ae569414d82a606c  numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4c66f10580fa26d1d17b2bdda96a5fc5  numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
60a01c86b1fc55e4ba8f2b41f690703b  numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
4bcac2b7f8510b0a6582b7d8661257be  numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
7c24a6a3b5c5b2c53c6807bf06c595c5  numpy-2.2.1-cp312-cp312-win32.whl
dc9f3c1eaade4da63e5f87e878e5805e  numpy-2.2.1-cp312-cp312-win_amd64.whl
9aacdedcb2cb3d6a45dfb823148e01cf  numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
8a2598b081c8af4ea6f6bbccc8965882  numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
e58b8db1a97599ed02a630eb86616bb9  numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
be6871a4edd2cd92b147421b9290e047  numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
6d3f141f3a8ecd04e1a1f7c1f89a8ca2  numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eba9d71e631521bd1d9882f8bfbc01d2  numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07f7ea0a7f9f6ce0ba5e016dff2a91e8  numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
a015f42afa15be8b87fc64120c245f18  numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
881b9b20e68b317850ad7b6306ac1c51  numpy-2.2.1-cp313-cp313-win32.whl
35bd751636dcea0ca0534ad9dee8057a  numpy-2.2.1-cp313-cp313-win_amd64.whl
7057313b668a4a26b5386203ebc040d9  numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
02031b405d028714126c26ffc5772f0e  numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
73eb35111b027d6771d9a91eb21ad7ef  numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
01f9a5eb7ec872d9682bb6a174897b35  numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
9bc363d2782931efa2648b42ce358a4c  numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b6492f49b50e892a7134baf2dba9f88d  numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a1c458a98cd9c7ad63f9c301398f4d63  numpy-2.2.1

Configuration

📅 Schedule: Branch creation - "every 1 hours every weekday" (UTC), Automerge - At any time (no schedule defined).

🚦 Automerge: Enabled.

Rebasing: Whenever PR is behind base branch, or you tick the rebase/retry checkbox.

👻 Immortal: This PR will be recreated if closed unmerged. Get config help if that's undesired.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

@renovate renovate bot force-pushed the renovate/all branch 7 times, most recently from e5164f0 to b61c1e7 Compare December 21, 2024 21:19
@renovate renovate bot force-pushed the renovate/all branch 6 times, most recently from a9e1f77 to d8bddc8 Compare December 31, 2024 00:22
@renovate renovate bot force-pushed the renovate/all branch 8 times, most recently from 0ffb116 to a9cd779 Compare January 8, 2025 17:39
@renovate renovate bot force-pushed the renovate/all branch 9 times, most recently from eb1ff2d to 95dc368 Compare January 14, 2025 13:36
@renovate renovate bot force-pushed the renovate/all branch 8 times, most recently from cdc6994 to 353842f Compare January 21, 2025 17:54
@renovate renovate bot force-pushed the renovate/all branch 2 times, most recently from eb667d0 to 575c14c Compare January 23, 2025 21:42
@renovate renovate bot merged commit e043946 into main Jan 24, 2025
8 checks passed
@renovate renovate bot deleted the renovate/all branch January 24, 2025 05:44
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants