Skip to content

Commit

Permalink
[TEST] Unit tests on bf16 transformer
Browse files Browse the repository at this point in the history
Signed-off-by: Alexander Peskov <[email protected]>
  • Loading branch information
AlexPeskov committed Aug 5, 2020
1 parent d564708 commit 75051e8
Show file tree
Hide file tree
Showing 2 changed files with 174 additions and 0 deletions.
2 changes: 2 additions & 0 deletions inference-engine/tests/unit/cpu/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,13 @@ addIeTargetTest(
ROOT ${CMAKE_CURRENT_SOURCE_DIR}
INCLUDES
${IE_MAIN_SOURCE_DIR}/src/mkldnn_plugin
${IE_MAIN_SOURCE_DIR}/src/transformations/include
OBJECT_FILES
${MKLDNN_SRC_OBJ}
LINK_LIBRARIES
unitTestUtils
mkldnn
inference_engine_transformations
ADD_CPPLINT
LABELS
CPU
Expand Down
172 changes: 172 additions & 0 deletions inference-engine/tests/unit/cpu/bf16_transformer_test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
// Copyright (C) 2018-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include <memory>
#include <gtest/gtest.h>

#include <ngraph/ngraph.hpp>
#include <ngraph_ops/fully_connected.hpp>

#include <inference_engine.hpp>
#include <details/ie_cnn_network_tools.h>
#include <convert_function_to_cnn_network.hpp>
#include <bf16transformer.h>

using ngraph::Shape;
using ngraph::element::Type;
using namespace ngraph::op;
using std::make_shared;
using InferenceEngine::Precision;

std::map<std::string, InferenceEngine::CNNLayerPtr> get_layer_collection(InferenceEngine::CNNNetwork net) {
IE_SUPPRESS_DEPRECATED_START
auto all_layers = InferenceEngine::details::CNNNetSortTopologically(net);
IE_SUPPRESS_DEPRECATED_END

std::map<std::string, InferenceEngine::CNNLayerPtr> res;
for (auto &layer : all_layers) {
res[layer->name] = layer;
}
return res;
}

enum TypeOfNet { NG, IE };
InferenceEngine::CNNNetwork create_net(std::shared_ptr<ngraph::Function> &func, TypeOfNet type) {
InferenceEngine::CNNNetwork ng_net(func);
if (type == NG)
return ng_net;
else
return InferenceEngine::CNNNetwork {InferenceEngine::details::convertFunctionToICNNNetwork(func, ng_net)};
}


TEST(BF16TransformerTest, KeepMemoryPrecision) {
/*
* Suggested pattern
* _______ _____
* [_mem_r_] [_inp_]
* _|______|_
* [___mul____]
* __|__
* [_sig_]
* __|__
* [_fc1_]
* ___|____
* ___|___ __|__
* [_mem_w_] [_fc2_]
* __|__
* [_out_]
*
* If does'n care about memory precision the mem_w will have precicion of data
* between fc1 and fc2 operations. In case of enabled BF16 it should be BF16.
* However mem_r still keep original precision.
*/
Shape shape = {3, 2};
Type type = ngraph::element::f32;
auto input = make_shared<Parameter>(type, shape);
auto mem_i = make_shared<Constant>(type, shape, 0);
auto mem_r = make_shared<ReadValue>(mem_i, "id");
mem_r->set_friendly_name("mem_r");

auto mul = make_shared<Multiply>(mem_r, input);
auto sig = make_shared<Sigmoid>(mul);

auto fc1_w = make_shared<Constant>(type, Shape{2, 2}, 1);
auto fc1_b = make_shared<Constant>(type, Shape{2}, 1);
auto fc1 = make_shared<FullyConnected>(sig, fc1_w, fc1_b, shape);

auto fc2_w = make_shared<Constant>(type, Shape{2, 2}, 1);
auto fc2_b = make_shared<Constant>(type, Shape{2}, 1);
auto fc2 = make_shared<FullyConnected>(fc1, fc2_w, fc2_b, shape);

auto mem_w = make_shared<Assign>(fc1, "id");
mem_w->set_friendly_name("mem_w");

// WA. Limitation of ngraph. control_dependency are required.
mem_w->add_control_dependency(mem_r);
fc2->add_control_dependency(mem_w);

auto function = std::make_shared<ngraph::Function>(
ngraph::NodeVector {fc2},
ngraph::ParameterVector {input},
"SimpleNet");

auto net = create_net(function, IE);

// Apply tested BF16 transformation
MKLDNNPlugin::BF16Transformer transformer;
transformer.convertToBFloat16(net);

// Check precision
auto layers = get_layer_collection(net);
Precision prc_mem_r = layers["mem_r"]->outData[0]->getPrecision();
Precision prc_mem_w = layers["mem_w"]->insData[0].lock()->getPrecision();

ASSERT_EQ(prc_mem_r, Precision::BF16);
ASSERT_EQ(prc_mem_w, Precision::BF16);
}

TEST(BF16TransformerTest, DISABLED_KeepMemoryPrecisionWithGEMM) {
/*
* Suggested pattern
* _______ _____
* [_mem_r_] [_inp_]
* _|______|_
* [___mul____]
* __|__
* [_sig_]
* __|____
* [_gemm1_]
* ___|____
* ___|___ __|____
* [_mem_w_] [_gemm2_]
* __|__
* [_out_]
*
* If does'n care about memory precision the mem_w will have precicion of data
* between fc1 and fc2 operations. In case of enabled BF16 it should be BF16.
* However mem_r still keep original precision.
*/
Shape shape = {3, 2};
Type type = ngraph::element::f32;
auto input = make_shared<Parameter>(type, shape);
auto mem_i = make_shared<Constant>(type, shape, 0);
auto mem_r = make_shared<ReadValue>(mem_i, "id");
mem_r->set_friendly_name("mem_r");

auto mul = make_shared<Multiply>(mem_r, input);
auto sig = make_shared<Sigmoid>(mul);

auto fc1_w = make_shared<Constant>(type, Shape{2, 2}, 1);
auto fc1 = make_shared<MatMul>(sig, fc1_w);

auto fc2_w = make_shared<Constant>(type, Shape{2, 2}, 1);
auto fc2 = make_shared<MatMul>(fc1, fc2_w);

auto mem_w = make_shared<Assign>(fc1, "id");
mem_w->set_friendly_name("mem_w");

// WA. Limitation of ngraph. control_dependency are required.
mem_w->add_control_dependency(mem_r);
fc2->add_control_dependency(mem_w);

auto function = std::make_shared<ngraph::Function>(
ngraph::NodeVector {fc2},
ngraph::ParameterVector {input},
"SimpleNet");

auto net = create_net(function, IE);

// Apply tested BF16 transformation
MKLDNNPlugin::BF16Transformer transformer;
transformer.convertToBFloat16(net);

// Check precision
auto layers = get_layer_collection(net);
Precision prc_mem_r = layers["mem_r"]->outData[0]->getPrecision();
Precision prc_mem_w = layers["mem_w"]->insData[0].lock()->getPrecision();

ASSERT_EQ(prc_mem_r, Precision::BF16);
ASSERT_EQ(prc_mem_w, Precision::BF16);
}

0 comments on commit 75051e8

Please sign in to comment.