Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feature(xcy): add muzero config for connect4 #107

Merged
merged 2 commits into from
Oct 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 83 additions & 0 deletions zoo/board_games/connect4/config/connect4_muzero_bot_mode_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
from easydict import EasyDict

# ==============================================================
# begin of the most frequently changed config specified by the user
# ==============================================================
collector_env_num = 8
n_episode = 8
evaluator_env_num = 5
num_simulations = 50
update_per_collect = 50
reanalyze_ratio = 0.
batch_size = 256
max_env_step = int(5e5)
# ==============================================================
# end of the most frequently changed config specified by the user
# ==============================================================

connect4_muzero_config = dict(
exp_name=
f'data_mz_ctree/connect4_botmode_rulebot_seed0',
env=dict(
battle_mode='play_with_bot_mode',
bot_action_type='rule',
channel_last=True,
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
n_evaluator_episode=evaluator_env_num,
manager=dict(shared_memory=False, ),
),
policy=dict(
model=dict(
observation_shape=(3, 6, 7),
action_space_size=7,
image_channel=3,
num_res_blocks=1,
num_channels=64,
support_scale=300,
reward_support_size=601,
value_support_size=601,
),
cuda=True,
env_type='board_games',
game_segment_length=int(6 * 7 / 2), # for battle_mode='play_with_bot_mode'
update_per_collect=update_per_collect,
batch_size=batch_size,
optim_type='Adam',
lr_piecewise_constant_decay=False,
learning_rate=0.003,
grad_clip_value=0.5,
num_simulations=num_simulations,
reanalyze_ratio=reanalyze_ratio,
# NOTE:In board_games, we set large td_steps to make sure the value target is the final outcome.
td_steps=int(6 * 7 / 2), # for battle_mode='play_with_bot_mode'
# NOTE:In board_games, we set discount_factor=1.
discount_factor=1,
n_episode=n_episode,
eval_freq=int(2e3),
replay_buffer_size=int(1e5),
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
),
)
connect4_muzero_config = EasyDict(connect4_muzero_config)
main_config = connect4_muzero_config

connect4_muzero_create_config = dict(
env=dict(
type='connect4',
import_names=['zoo.board_games.connect4.envs.connect4_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(
type='muzero',
import_names=['lzero.policy.muzero'],
),
)
connect4_muzero_create_config = EasyDict(connect4_muzero_create_config)
create_config = connect4_muzero_create_config

if __name__ == "__main__":
from lzero.entry import train_muzero

train_muzero([main_config, create_config], seed=1, max_env_step=max_env_step)
83 changes: 83 additions & 0 deletions zoo/board_games/connect4/config/connect4_muzero_sp_mode_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
from easydict import EasyDict

# ==============================================================
# begin of the most frequently changed config specified by the user
# ==============================================================
collector_env_num = 8
n_episode = 8
evaluator_env_num = 5
num_simulations = 50
update_per_collect = 50
reanalyze_ratio = 0.
batch_size = 256
max_env_step = int(5e5)
# ==============================================================
# end of the most frequently changed config specified by the user
# ==============================================================

connect4_muzero_config = dict(
exp_name=
f'data_mz_ctree/connect4_spmode_rulebot_seed0',
env=dict(
battle_mode='self_play_mode',
bot_action_type='rule',
channel_last=True,
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
n_evaluator_episode=evaluator_env_num,
manager=dict(shared_memory=False, ),
),
policy=dict(
model=dict(
observation_shape=(3, 6, 7),
action_space_size=7,
image_channel=3,
num_res_blocks=1,
num_channels=64,
support_scale=300,
reward_support_size=601,
value_support_size=601,
),
cuda=True,
env_type='board_games',
game_segment_length=int(6 * 7), # for battle_mode='self_play_mode'
update_per_collect=update_per_collect,
batch_size=batch_size,
optim_type='Adam',
lr_piecewise_constant_decay=False,
learning_rate=0.003,
grad_clip_value=0.5,
num_simulations=num_simulations,
reanalyze_ratio=reanalyze_ratio,
# NOTE:In board_games, we set large td_steps to make sure the value target is the final outcome.
td_steps=int(6 * 7), # for battle_mode='self_play_mode'
# NOTE:In board_games, we set discount_factor=1.
discount_factor=1,
n_episode=n_episode,
eval_freq=int(2e3),
replay_buffer_size=int(1e5),
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
),
)
connect4_muzero_config = EasyDict(connect4_muzero_config)
main_config = connect4_muzero_config

connect4_muzero_create_config = dict(
env=dict(
type='connect4',
import_names=['zoo.board_games.connect4.envs.connect4_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(
type='muzero',
import_names=['lzero.policy.muzero'],
),
)
connect4_muzero_create_config = EasyDict(connect4_muzero_create_config)
create_config = connect4_muzero_create_config

if __name__ == "__main__":
from lzero.entry import train_muzero

train_muzero([main_config, create_config], seed=1, max_env_step=max_env_step)