Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 35 additions & 55 deletions testdata/dnn/tflite/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,77 +93,57 @@ def split(x):
inp = np.random.standard_normal((1, 3)).astype(np.float32)
save_tflite_model(split, inp, 'split')

def keras_to_tf(model, input_shape):
tf_func = tf.function(
model.call,
input_signature=[tf.TensorSpec(input_shape, tf.float32)],
)
inp = np.random.standard_normal((input_shape)).astype(np.float32)

return tf_func, inp

fully_connected = tf.keras.models.Sequential([
tf.keras.layers.Dense(3),
tf.keras.layers.ReLU(),
tf.keras.layers.Softmax(),
])

fully_connected = tf.function(
fully_connected.call,
input_signature=[tf.TensorSpec((1,2), tf.float32)],
)

inp = np.random.standard_normal((1, 2)).astype(np.float32)
fully_connected, inp = keras_to_tf(fully_connected, (1, 2))
save_tflite_model(fully_connected, inp, 'fully_connected')

permutation_3d = tf.keras.models.Sequential([
tf.keras.layers.Permute((2,1))
tf.keras.layers.Permute((2, 1))
])

permutation_3d = tf.function(
permutation_3d.call,
input_signature=[tf.TensorSpec((1,2,3), tf.float32)],
)
inp = np.random.standard_normal((1, 2, 3)).astype(np.float32)
permutation_3d, inp = keras_to_tf(permutation_3d, (1, 2, 3))
save_tflite_model(permutation_3d, inp, 'permutation_3d')

# Temporarily disabled as TFLiteConverter produces a incorrect graph in this case
#permutation_4d_0123 = tf.keras.models.Sequential([
# tf.keras.layers.Permute((1,2,3)),
# tf.keras.layers.Conv2D(3,1)
#])
#
#permutation_4d_0123 = tf.function(
# permutation_4d_0123.call,
# input_signature=[tf.TensorSpec((1,2,3,4), tf.float32)],
#)
#inp = np.random.standard_normal((1, 2, 3, 4)).astype(np.float32)
#save_tflite_model(permutation_4d_0123, inp, 'permutation_4d_0123')

permutation_4d_0132 = tf.keras.models.Sequential([
tf.keras.layers.Permute((1,3,2)),
tf.keras.layers.Conv2D(3,1)
])

permutation_4d_0132 = tf.function(
permutation_4d_0132.call,
input_signature=[tf.TensorSpec((1,2,3,4), tf.float32)],
)
inp = np.random.standard_normal((1, 2, 3, 4)).astype(np.float32)
save_tflite_model(permutation_4d_0132, inp, 'permutation_4d_0132')

permutation_4d_0213 = tf.keras.models.Sequential([
tf.keras.layers.Permute((2,1,3)),
tf.keras.layers.Conv2D(3,1)
# (1, 2, 3) is temporarily disabled as TFLiteConverter produces a incorrect graph in this case
permutation_4d_list = [(1, 3, 2), (2, 1, 3), (2, 3, 1)]
for perm_axis in permutation_4d_list:
permutation_4d_model = tf.keras.models.Sequential([
tf.keras.layers.Permute(perm_axis),
tf.keras.layers.Conv2D(3, 1)
])

permutation_4d_model, inp = keras_to_tf(permutation_4d_model, (1, 2, 3, 4))
model_name = f"permutation_4d_0{''.join(map(str, perm_axis))}"
save_tflite_model(permutation_4d_model, inp, model_name)

global_average_pooling_2d = tf.keras.models.Sequential([
tf.keras.layers.GlobalAveragePooling2D(keepdims=True),
tf.keras.layers.ZeroPadding2D(1),
tf.keras.layers.GlobalAveragePooling2D(keepdims=False)
])

permutation_4d_0213 = tf.function(
permutation_4d_0213.call,
input_signature=[tf.TensorSpec((1,2,3,4), tf.float32)],
)
inp = np.random.standard_normal((1, 2, 3, 4)).astype(np.float32)
save_tflite_model(permutation_4d_0213, inp, 'permutation_4d_0213')
global_average_pooling_2d, inp = keras_to_tf(global_average_pooling_2d, (1, 7, 7, 5))
save_tflite_model(global_average_pooling_2d, inp, 'global_average_pooling_2d')

permutation_4d_0231 = tf.keras.models.Sequential([
tf.keras.layers.Permute((2,3,1)),
tf.keras.layers.Conv2D(3,1)
global_max_pool = tf.keras.models.Sequential([
tf.keras.layers.GlobalMaxPool2D(keepdims=True),
tf.keras.layers.ZeroPadding2D(1),
tf.keras.layers.GlobalMaxPool2D(keepdims=True)
])

permutation_4d_0231 = tf.function(
permutation_4d_0231.call,
input_signature=[tf.TensorSpec((1,2,3,4), tf.float32)],
)
inp = np.random.standard_normal((1, 2, 3, 4)).astype(np.float32)
save_tflite_model(permutation_4d_0231, inp, 'permutation_4d_0231')
global_max_pool, inp = keras_to_tf(global_max_pool, (1, 7, 7, 5))
save_tflite_model(global_max_pool, inp, 'global_max_pooling_2d')
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file added testdata/dnn/tflite/global_max_pooling_2d.tflite
Binary file not shown.
Binary file added testdata/dnn/tflite/global_max_pooling_2d_inp.npy
Binary file not shown.
Binary file not shown.