Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for python 3.6 #2836

Merged
merged 16 commits into from
May 25, 2022
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ['3.7', '3.8', '3.9', '3.10']
python-version: ['3.6', '3.7', '3.8', '3.9', '3.10']
steps:
- uses: actions/checkout@v2
- run: |
Expand Down
2 changes: 1 addition & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ repos:
hooks:
- id: pyupgrade
# TODO: remove `--keep-runtime-typing` option
args: ["--py37-plus", "--keep-runtime-typing"]
args: ["--py36-plus", "--keep-runtime-typing"]
- repo: local
hooks:
- id: pyright
Expand Down
28 changes: 9 additions & 19 deletions gym/core.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,5 @@
"""Core API for Environment, Wrapper, ActionWrapper, RewardWrapper and ObservationWrapper."""
from __future__ import annotations

from abc import abstractmethod
from typing import Generic, Optional, SupportsFloat, TypeVar, Union
from typing import Generic, Optional, SupportsFloat, Tuple, TypeVar, Union

from gym import spaces
from gym.logger import deprecation
Expand Down Expand Up @@ -63,8 +60,7 @@ def np_random(self) -> RandomNumberGenerator:
def np_random(self, value: RandomNumberGenerator):
self._np_random = value

@abstractmethod
def step(self, action: ActType) -> tuple[ObsType, float, bool, dict]:
def step(self, action: ActType) -> Tuple[ObsType, float, bool, dict]:
"""Run one timestep of the environment's dynamics.

When end of episode is reached, you are responsible for calling :meth:`reset` to reset this environment's state.
Expand All @@ -88,14 +84,13 @@ def step(self, action: ActType) -> tuple[ObsType, float, bool, dict]:
"""
raise NotImplementedError

@abstractmethod
def reset(
self,
*,
seed: Optional[int] = None,
return_info: bool = False,
options: Optional[dict] = None,
) -> Union[ObsType, tuple[ObsType, dict]]:
) -> Union[ObsType, Tuple[ObsType, dict]]:
"""Resets the environment to an initial state and returns the initial observation.

This method can reset the environment's random number generator(s) if ``seed`` is an integer or
Expand Down Expand Up @@ -129,7 +124,6 @@ def reset(
if seed is not None:
self._np_random, seed = seeding.np_random(seed)

@abstractmethod
def render(self, mode="human"):
"""Renders the environment.

Expand Down Expand Up @@ -204,7 +198,7 @@ def seed(self, seed=None):
return [seed]

@property
def unwrapped(self) -> Env:
def unwrapped(self) -> "Env":
"""Returns the base non-wrapped environment.

Returns:
Expand Down Expand Up @@ -251,7 +245,7 @@ def __init__(self, env: Env):

self._action_space: Optional[spaces.Space] = None
self._observation_space: Optional[spaces.Space] = None
self._reward_range: Optional[tuple[SupportsFloat, SupportsFloat]] = None
self._reward_range: Optional[Tuple[SupportsFloat, SupportsFloat]] = None
self._metadata: Optional[dict] = None

def __getattr__(self, name):
Expand Down Expand Up @@ -293,14 +287,14 @@ def observation_space(self, space: spaces.Space):
self._observation_space = space

@property
def reward_range(self) -> tuple[SupportsFloat, SupportsFloat]:
def reward_range(self) -> Tuple[SupportsFloat, SupportsFloat]:
"""Return the reward range of the environment."""
if self._reward_range is None:
return self.env.reward_range
return self._reward_range

@reward_range.setter
def reward_range(self, value: tuple[SupportsFloat, SupportsFloat]):
def reward_range(self, value: Tuple[SupportsFloat, SupportsFloat]):
self._reward_range = value

@property
Expand All @@ -314,11 +308,11 @@ def metadata(self) -> dict:
def metadata(self, value):
self._metadata = value

def step(self, action: ActType) -> tuple[ObsType, float, bool, dict]:
def step(self, action: ActType) -> Tuple[ObsType, float, bool, dict]:
"""Steps through the environment with action."""
return self.env.step(action)

def reset(self, **kwargs) -> Union[ObsType, tuple[ObsType, dict]]:
def reset(self, **kwargs) -> Union[ObsType, Tuple[ObsType, dict]]:
"""Resets the environment with kwargs."""
return self.env.reset(**kwargs)

Expand Down Expand Up @@ -389,7 +383,6 @@ def step(self, action):
observation, reward, done, info = self.env.step(action)
return self.observation(observation), reward, done, info

@abstractmethod
def observation(self, observation):
"""Returns a modified observation."""
raise NotImplementedError
Expand Down Expand Up @@ -424,7 +417,6 @@ def step(self, action):
observation, reward, done, info = self.env.step(action)
return observation, self.reward(reward), done, info

@abstractmethod
def reward(self, reward):
"""Returns a modified ``reward``."""
raise NotImplementedError
Expand Down Expand Up @@ -466,12 +458,10 @@ def step(self, action):
"""Runs the environment :meth:`env.step` using the modified ``action`` from :meth:`self.action`."""
return self.env.step(self.action(action))

@abstractmethod
def action(self, action):
"""Returns a modified action before :meth:`env.step` is called."""
raise NotImplementedError

@abstractmethod
def reverse_action(self, action):
"""Returns a reversed ``action``."""
raise NotImplementedError
42 changes: 19 additions & 23 deletions gym/envs/registration.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
from __future__ import annotations

import contextlib
import copy
import difflib
Expand All @@ -10,9 +8,10 @@
import warnings
from dataclasses import dataclass, field
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
Optional,
Sequence,
SupportsFloat,
Expand All @@ -36,15 +35,12 @@
if sys.version_info >= (3, 8):
from typing import Literal
else:

class Literal(str):
def __class_getitem__(cls, item):
return Any
from typing_extensions import Literal


from gym import Env, error, logger

ENV_ID_RE: re.Pattern = re.compile(
ENV_ID_RE = re.compile(
r"^(?:(?P<namespace>[\w:-]+)\/)?(?:(?P<name>[\w:.-]+?))(?:-v(?P<version>\d+))?$"
)

Expand Down Expand Up @@ -215,7 +211,7 @@ def _check_version_exists(ns: Optional[str], name: str, version: Optional[int]):


def find_highest_version(ns: Optional[str], name: str) -> Optional[int]:
version: list[int] = [
version: List[int] = [
spec_.version
for spec_ in registry.values()
if spec_.namespace == ns and spec_.name == name and spec_.version is not None
Expand Down Expand Up @@ -276,39 +272,39 @@ def load_env_plugins(entry_point: str = "gym.envs") -> None:


@overload
def make(id: Literal["CartPole-v1"], **kwargs) -> Env[np.ndarray, np.ndarray | int]: ...
def make(id: Literal["CartPole-v0", "CartPole-v1"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, int]]: ...
@overload
def make(id: Literal["MountainCar-v0"], **kwargs) -> Env[np.ndarray, np.ndarray | int]: ...
def make(id: Literal["MountainCar-v0"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, int]]: ...
@overload
def make(id: Literal["MountainCarContinuous-v0"], **kwargs) -> Env[np.ndarray, np.ndarray | Sequence[SupportsFloat]]: ...
def make(id: Literal["MountainCarContinuous-v0"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, Sequence[SupportsFloat]]]: ...
@overload
def make(id: Literal["Pendulum-v1"], **kwargs) -> Env[np.ndarray, np.ndarray | Sequence[SupportsFloat]]: ...
def make(id: Literal["Pendulum-v1"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, Sequence[SupportsFloat]]]: ...
@overload
def make(id: Literal["Acrobot-v1"], **kwargs) -> Env[np.ndarray, np.ndarray | int]: ...
def make(id: Literal["Acrobot-v1"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, int]]: ...

# Box2d
# ----------------------------------------


@overload
def make(id: Literal["LunarLander-v2", "LunarLanderContinuous-v2"], **kwargs) -> Env[np.ndarray, np.ndarray | int]: ...
def make(id: Literal["LunarLander-v2", "LunarLanderContinuous-v2"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, int]]: ...
@overload
def make(id: Literal["BipedalWalker-v3", "BipedalWalkerHardcore-v3"], **kwargs) -> Env[np.ndarray, np.ndarray | Sequence[SupportsFloat]]: ...
def make(id: Literal["BipedalWalker-v3", "BipedalWalkerHardcore-v3"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, Sequence[SupportsFloat]]]: ...
@overload
def make(id: Literal["CarRacing-v1", "CarRacingDomainRandomize-v1"], **kwargs) -> Env[np.ndarray, np.ndarray | Sequence[SupportsFloat]]: ...
def make(id: Literal["CarRacing-v1", "CarRacingDomainRandomize-v1"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, Sequence[SupportsFloat]]]: ...

# Toy Text
# ----------------------------------------


@overload
def make(id: Literal["Blackjack-v1"], **kwargs) -> Env[np.ndarray, np.ndarray | int]: ...
def make(id: Literal["Blackjack-v1"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, int]]: ...
@overload
def make(id: Literal["FrozenLake-v1", "FrozenLake8x8-v1"], **kwargs) -> Env[np.ndarray, np.ndarray | int]: ...
def make(id: Literal["FrozenLake-v1", "FrozenLake8x8-v1"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, int]]: ...
@overload
def make(id: Literal["CliffWalking-v0"], **kwargs) -> Env[np.ndarray, np.ndarray | int]: ...
def make(id: Literal["CliffWalking-v0"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, int]]: ...
@overload
def make(id: Literal["Taxi-v3"], **kwargs) -> Env[np.ndarray, np.ndarray | int]: ...
def make(id: Literal["Taxi-v3"], **kwargs) -> Env[np.ndarray, Union[np.ndarray, int]]: ...

# Mujoco
# ----------------------------------------
Expand Down Expand Up @@ -388,7 +384,7 @@ def env_specs(self):


# Global registry of environments. Meant to be accessed through `register` and `make`
registry: dict[str, EnvSpec] = EnvRegistry()
registry: Dict[str, EnvSpec] = EnvRegistry()
current_namespace: Optional[str] = None


Expand Down Expand Up @@ -492,7 +488,7 @@ def register(id: str, **kwargs):


def make(
id: str | EnvSpec,
id: Union[str, EnvSpec],
max_episode_steps: Optional[int] = None,
autoreset: bool = False,
disable_env_checker: bool = False,
Expand Down
10 changes: 4 additions & 6 deletions gym/spaces/box.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
"""Implementation of a space that represents closed boxes in euclidean space."""
from __future__ import annotations

from typing import Optional, Sequence, SupportsFloat, Tuple, Type, Union
from typing import List, Optional, Sequence, SupportsFloat, Tuple, Type, Union

import numpy as np

Expand Down Expand Up @@ -47,7 +45,7 @@ def __init__(
high: Union[SupportsFloat, np.ndarray],
shape: Optional[Sequence[int]] = None,
dtype: Type = np.float32,
seed: Optional[int | seeding.RandomNumberGenerator] = None,
seed: Optional[Union[int, seeding.RandomNumberGenerator]] = None,
):
r"""Constructor of :class:`Box`.

Expand Down Expand Up @@ -195,7 +193,7 @@ def to_jsonable(self, sample_n):
"""Convert a batch of samples from this space to a JSONable data type."""
return np.array(sample_n).tolist()

def from_jsonable(self, sample_n: Sequence[SupportsFloat]) -> list[np.ndarray]:
def from_jsonable(self, sample_n: Sequence[SupportsFloat]) -> List[np.ndarray]:
"""Convert a JSONable data type to a batch of samples from this space."""
return [np.asarray(sample) for sample in sample_n]

Expand Down Expand Up @@ -253,7 +251,7 @@ def get_precision(dtype) -> SupportsFloat:
def _broadcast(
value: Union[SupportsFloat, np.ndarray],
dtype,
shape: tuple[int, ...],
shape: Tuple[int, ...],
inf_sign: str,
) -> np.ndarray:
"""Handle infinite bounds and broadcast at the same time if needed."""
Expand Down
14 changes: 6 additions & 8 deletions gym/spaces/dict.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,8 @@
"""Implementation of a space that represents the cartesian product of other spaces as a dictionary."""
from __future__ import annotations

from collections import OrderedDict
from collections.abc import Mapping, Sequence
from typing import Dict as TypingDict
from typing import Optional
from typing import Optional, Union

import numpy as np

Expand Down Expand Up @@ -53,8 +51,8 @@ class Dict(Space[TypingDict[str, Space]], Mapping):

def __init__(
self,
spaces: Optional[dict[str, Space]] = None,
seed: Optional[dict | int | seeding.RandomNumberGenerator] = None,
spaces: Optional[TypingDict[str, Space]] = None,
seed: Optional[Union[dict, int, seeding.RandomNumberGenerator]] = None,
**spaces_kwargs: Space,
):
"""Constructor of :class:`Dict` space.
Expand Down Expand Up @@ -101,7 +99,7 @@ def __init__(
None, None, seed # type: ignore
) # None for shape and dtype, since it'll require special handling

def seed(self, seed: Optional[dict | int] = None) -> list:
def seed(self, seed: Optional[Union[dict, int]] = None) -> list:
"""Seed the PRNG of this space and all subspaces."""
seeds = []
if isinstance(seed, dict):
Expand Down Expand Up @@ -189,9 +187,9 @@ def to_jsonable(self, sample_n: list) -> dict:
for key, space in self.spaces.items()
}

def from_jsonable(self, sample_n: dict[str, list]) -> list:
def from_jsonable(self, sample_n: TypingDict[str, list]) -> list:
"""Convert a JSONable data type to a batch of samples from this space."""
dict_of_list: dict[str, list] = {}
dict_of_list: TypingDict[str, list] = {}
for key, space in self.spaces.items():
dict_of_list[key] = space.from_jsonable(sample_n[key])
ret = []
Expand Down
6 changes: 2 additions & 4 deletions gym/spaces/discrete.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
"""Implementation of a space consisting of finitely many elements."""
from __future__ import annotations

from typing import Optional
from typing import Optional, Union

import numpy as np

Expand All @@ -23,7 +21,7 @@ class Discrete(Space[int]):
def __init__(
self,
n: int,
seed: Optional[int | seeding.RandomNumberGenerator] = None,
seed: Optional[Union[int, seeding.RandomNumberGenerator]] = None,
start: int = 0,
):
r"""Constructor of :class:`Discrete` space.
Expand Down
8 changes: 3 additions & 5 deletions gym/spaces/multi_binary.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
"""Implementation of a space that consists of binary np.ndarrays of a fixed shape."""
from __future__ import annotations

from typing import Optional, Sequence, Union
from typing import Optional, Sequence, Tuple, Union

import numpy as np

Expand Down Expand Up @@ -29,7 +27,7 @@ class MultiBinary(Space[np.ndarray]):
def __init__(
self,
n: Union[np.ndarray, Sequence[int], int],
seed: Optional[int | seeding.RandomNumberGenerator] = None,
seed: Optional[Union[int, seeding.RandomNumberGenerator]] = None,
):
"""Constructor of :class:`MultiBinary` space.

Expand All @@ -49,7 +47,7 @@ def __init__(
super().__init__(input_n, np.int8, seed)

@property
def shape(self) -> tuple[int, ...]:
def shape(self) -> Tuple[int, ...]:
"""Has stricter type than gym.Space - never None."""
return self._shape # type: ignore

Expand Down
Loading