Skip to content

Commit

Permalink
update README (#62)
Browse files Browse the repository at this point in the history
* update README

* update

* update

Co-authored-by: huanghaian <[email protected]>
  • Loading branch information
ZwwWayne and hhaAndroid authored Sep 21, 2022
1 parent 2aad4fd commit 84f115c
Show file tree
Hide file tree
Showing 4 changed files with 27 additions and 29 deletions.
27 changes: 13 additions & 14 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,8 +42,7 @@ English | [简体中文](README_zh-CN.md)

## Introduction

MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch. It is
a part of the [OpenMMLab](https://openmmlab.com/) project.
MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch and [MMDetection](https://github.com/open-mmlab/mmdetection). It is a part of the [OpenMMLab](https://openmmlab.com/) project.

The master branch works with **PyTorch 1.6+**.

Expand All @@ -53,20 +52,20 @@ The master branch works with **PyTorch 1.6+**.
<details open>
<summary>Major features</summary>

- **Fair and convenient algorithm evaluation**
- **Unified and convenient benchmark**

MMYOLO unifies the modules of various YOLO algorithms and provides a unified benchmark process. Users can compare and analyze in a fair and convenient way.
MMYOLO unifies the implementation of modules in various YOLO algorithms and provides a unified benchmark. Users can compare and analyze in a fair and convenient way.

- **Detailed introductory and advanced documentation**
- **Rich and detailed documentation**

MMYOLO provides a series of documents from getting started, to model deployment, advanced guidelines, and algorithm analysis, making it easy for different users to get started and make extensions quickly.
MMYOLO provides rich documentation for getting started, model deployment, advanced usages, and algorithm analysis, making it easy for users at different levels to get started and make extensions quickly.

- **Modular Design**

MMYOLO decompose the framework into different components and users can easily construct a customized model by combining different modules and training and testing strategies.
MMYOLO decomposes the framework into different components where users can easily customize a model by combining different modules with various training and testing strategies.

<img src="https://user-images.githubusercontent.com/27466624/190986949-01414a91-baae-4228-8828-c59db58dcf36.jpg" alt="BaseModule"/>
The picture is provided by RangeKing@GitHub, thank you very much!
The figure is contributed by RangeKing@GitHub, thank you very much!

</details>

Expand All @@ -75,9 +74,9 @@ The master branch works with **PyTorch 1.6+**.
**v0.1.0** was released on 21/9/2022:

- Unified component interfaces based on [OpenMMLab 2.0](https://github.com/open-mmlab) and [MMDetection 3.0](https://github.com/open-mmlab/mmdetection/tree/3.x)
- Support for YOLOv5/YOLOX training and deployment, support for YOLOv6 inference and deployment
- Refactored YOLOX for MMDetection to provide faster training and inference
- Detailed introductory and advanced tutorials are provided, see the [English tutorial](https://mmyolo.readthedocs.io/en/latest)
- Support YOLOv5/YOLOX training, support YOLOv6 inference. Deployment will be supported soon.
- Refactored YOLOX from MMDetection to accelerate training and inference.
- Detailed introduction and advanced tutorials are provided, see the [English tutorial](https://mmyolo.readthedocs.io/en/latest).

For release history and update details, please refer to [changelog](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html).

Expand All @@ -101,11 +100,11 @@ mim install -e .

## Tutorial

MMYOLO is based on the MMDetection and uses the same code organization and design approach. To get better use of this, please read [MMDetection Overview](https://mmdetection.readthedocs.io/en/latest/get_started.html) for the first understanding of MMDetection.
MMYOLO is based on MMDetection and adopts the same code structure and design approach. To get better use of this, please read [MMDetection Overview](https://mmdetection.readthedocs.io/en/latest/get_started.html) for the first understanding of MMDetection.

MMYOLO usage is almost identical to MMDetection and all tutorials are straightforward to use, you can also learn about [MMDetection User Guide and Advanced Guide](https://mmdetection.readthedocs.io/en/3.x/).
The usage of MMYOLO is almost identical to MMDetection and all tutorials are straightforward to use, you can also learn about [MMDetection User Guide and Advanced Guide](https://mmdetection.readthedocs.io/en/3.x/).

For different sections than MMDetection, we have also prepared user guides and advanced guides, please read our [documentation](https://mmyolo.readthedocs.io/zenh_CN/latest/).
For different parts from MMDetection, we have also prepared user guides and advanced guides, please read our [documentation](https://mmyolo.readthedocs.io/zenh_CN/latest/).

- User Guides

Expand Down
17 changes: 8 additions & 9 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,20 +42,19 @@

## 简介

MMYOLO 是一个基于 PyTorch 的 YOLO 系列算法开源工具箱。它是 [OpenMMLab](https://openmmlab.com/) 项目的一部分。
MMYOLO 是一个基于 PyTorch 和 MMDetection 的 YOLO 系列算法开源工具箱。它是 [OpenMMLab](https://openmmlab.com/) 项目的一部分。

主分支代码目前支持 PyTorch 1.6 以上的版本。

<img src="https://user-images.githubusercontent.com/12907710/137271636-56ba1cd2-b110-4812-8221-b4c120320aa9.png"/>

<img src="https://user-images.githubusercontent.com/45811724/190993591-bd3f1f11-1c30-4b93-b5f4-05c9ff64ff7f.gif"/>

<details open>
<summary>主要特性</summary>

- **公平便捷的算法评测**
- **统一便捷的算法评测**

MMYOLO 统一各类 YOLO 算法模块, 并提供统一评测流程,用户可以公平便捷的进行对比分析
MMYOLO 统一了各类 YOLO 算法模块的实现, 并提供了统一的评测流程,用户可以公平便捷地进行对比分析

- **丰富的入门和进阶文档**

Expand All @@ -75,9 +74,9 @@ MMYOLO 是一个基于 PyTorch 的 YOLO 系列算法开源工具箱。它是 [Op
**v0.1.0** 版本已经在 2022.9.21 发布:

- 基于 [OpenMMLab 2.0](https://github.com/open-mmlab)[MMDetection 3.0](https://github.com/open-mmlab/mmdetection/tree/3.x) 统一了各组件接口。
- 支持 YOLOv5/YOLOX 训练和部署,支持 YOLOv6 推理和部署
- 重构了 MMDetection 的 YOLOX,提供了更快的训练和推理速度
- 提供了详细入门和进阶教程,详见 [中文教程](https://mmyolo.readthedocs.io/zh_CN/latest)
- 支持 YOLOv5/YOLOX 训练,支持 YOLOv6 推理。即将支持部署。
- 重构了 MMDetection 的 YOLOX,提供了更快的训练和推理速度
- 提供了详细入门和进阶教程,详见 [中文教程](https://mmyolo.readthedocs.io/zh_CN/latest)

发布历史和更新细节请参考 [更新日志](https://mmyolo.readthedocs.io/zh_CN/latest/notes/changelog.html)

Expand All @@ -101,11 +100,11 @@ mim install -e .

## 教程

MMYOLO 基于 MMDetection 开源库,并且采用相同的代码组织和设计方式。为了更好的使用本开源库,请先阅读 [MMDetection 概述](https://mmdetection.readthedocs.io/zh_CN/latest/get_started.html) 对 MMDetection 进行初步的了解
MMYOLO 基于 MMDetection 开源库,并且采用相同的代码组织和设计方式。为了更好的使用本开源库,请先阅读 [MMDetection 概述](https://mmdetection.readthedocs.io/zh_CN/latest/get_started.html) 对 MMDetection 进行初步地了解

MMYOLO 用法和 MMDetection 几乎一致,所有教程都是通用的,你也可以了解 [MMDetection 用户指南和进阶指南](https://mmdetection.readthedocs.io/zh_CN/3.x/)

针对和 MMDetection 不同部分,我们也准备了用户指南和进阶指南,请阅读我们的 [文档](https://mmyolo.readthedocs.io/zh_CN/latest/)
针对和 MMDetection 不同的部分,我们也准备了用户指南和进阶指南,请阅读我们的 [文档](https://mmyolo.readthedocs.io/zh_CN/latest/)

- 用户指南

Expand Down
6 changes: 3 additions & 3 deletions docs/en/notes/changelog.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,6 @@ We have released MMYOLO open source library, which is based on MMEngine, MMCV 2.

### Highlights

1. Support for YOLOv5/YOLOX training and deployment, support for YOLOv6 inference and deployment.
2. Refactored YOLOX for MMDetection to provide faster training and inference.
3. Detailed introductory and advanced tutorials are provided, see the [English tutorial](https://mmyolo.readthedocs.io/en/latest).
1. Support YOLOv5/YOLOX training, support YOLOv6 inference. Deployment will be supported soon.
2. Refactored YOLOX from MMDetection to accelerate training and inference.
3. Detailed introduction and advanced tutorials are provided, see the [English tutorial](https://mmyolo.readthedocs.io/en/latest).
6 changes: 3 additions & 3 deletions docs/zh_cn/notes/changelog.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,6 @@

### 亮点

1. 支持 YOLOv5/YOLOX 训练和部署,支持 YOLOv6 推理和部署
2. 重构了 MMDetection 的 YOLOX,提供了更快的训练和推理速度
3. 提供了详细入门和进阶教程, 包括 YOLOv5 从入门到部署、YOLOv5 算法原理和实现全解析、 特征图可视化等教程
1. 支持 YOLOv5/YOLOX 训练,支持 YOLOv6 推理。部署即将支持。
2. 重构了 MMDetection 的 YOLOX,提供了更快的训练和推理速度
3. 提供了详细入门和进阶教程, 包括 YOLOv5 从入门到部署、YOLOv5 算法原理和实现全解析、 特征图可视化等教程

0 comments on commit 84f115c

Please sign in to comment.