-
Notifications
You must be signed in to change notification settings - Fork 375
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Support model complexity computation (#779)
* [Feature] Add support model complexity computation * [Fix] fix lint error * [Feature] update print_helper * Update docstring * update api, docs, fix lint * fix lint * update doc and add test * update docstring * update docstring * update test * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/print_helper.py Co-authored-by: Zaida Zhou <[email protected]> * Update mmengine/analysis/complexity_analysis.py Co-authored-by: Zaida Zhou <[email protected]> * Update docs/en/advanced_tutorials/model_analysis.md Co-authored-by: Zaida Zhou <[email protected]> * Update docs/en/advanced_tutorials/model_analysis.md Co-authored-by: Zaida Zhou <[email protected]> * update docs * update docs * update docs and docstring * update docs * update test withj mmlogger * Update mmengine/analysis/complexity_analysis.py Co-authored-by: Zaida Zhou <[email protected]> * Update tests/test_analysis/test_activation_count.py Co-authored-by: Zaida Zhou <[email protected]> * Apply suggestions from code review Co-authored-by: Zaida Zhou <[email protected]> * update test according to review * Apply suggestions from code review Co-authored-by: Zaida Zhou <[email protected]> * fix lint * fix test * Apply suggestions from code review * fix API document * Update analysis.rst * rename variables * minor refinement * Apply suggestions from code review * fix lint * replace tabulate with existing rich * Apply suggestions from code review * indent * Update mmengine/analysis/complexity_analysis.py * Update mmengine/analysis/complexity_analysis.py * Update mmengine/analysis/complexity_analysis.py --------- Co-authored-by: Zaida Zhou <[email protected]> Co-authored-by: zhouzaida <[email protected]>
- Loading branch information
1 parent
1d97c07
commit aee2f6a
Showing
14 changed files
with
4,223 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
# Model Complexity Analysis | ||
|
||
We provide a tool to help with the complexity analysis for the network. We borrow the idea from the implementation of [fvcore](https://github.com/facebookresearch/fvcore) to build this tool, and plan to support more custom operators in the future. Currently, it provides the interfaces to compute "parameter", "activation" and "flops" of the given model, and supports printing the related information layer-by-layer in terms of network structure or table. The analysis tool provides both operator-level and module-level flop counts simultaneously. Please refer to [Flop Count](https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md) for implementation details of how to accurately measure the flops of one operator if interested. | ||
|
||
## What's FLOPs | ||
|
||
Flop is not a well-defined metric in complexity analysis, we follow [detectron2](https://detectron2.readthedocs.io/en/latest/modules/fvcore.html#fvcore.nn.FlopCountAnalysis) to use one fused multiple-add as one flop. | ||
|
||
## What's Activation | ||
|
||
Activation is used to measure the feature quantity produced from one layer. | ||
|
||
For example, given the inputs with shape `inputs = torch.randn((1, 3, 10, 10))`, and one linear layer with `conv = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=1)`. | ||
|
||
We get the `output` with shape `(1, 10, 10, 10)` after feeding the `inputs` into `conv`. The activation quantity of `output` of this `conv` layer is `1000=10*10*10` | ||
|
||
Let's start with the following examples. | ||
|
||
## Usage Example 1: Model built with native nn.Module | ||
|
||
### Code | ||
|
||
```python | ||
import torch | ||
from torch import nn | ||
from mmengine.analysis import get_model_complexity_info | ||
# return a dict of analysis results, including: | ||
# ['flops', 'flops_str', 'activations', 'activations_str', 'params', 'params_str', 'out_table', 'out_arch'] | ||
|
||
class InnerNet(nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
self.fc1 = nn.Linear(10,10) | ||
self.fc2 = nn.Linear(10,10) | ||
def forward(self, x): | ||
return self.fc1(self.fc2(x)) | ||
|
||
|
||
class TestNet(nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
self.fc1 = nn.Linear(10,10) | ||
self.fc2 = nn.Linear(10,10) | ||
self.inner = InnerNet() | ||
def forward(self, x): | ||
return self.fc1(self.fc2(self.inner(x))) | ||
|
||
input_shape = (1, 10) | ||
model = TestNet() | ||
|
||
analysis_results = get_model_complexity_info(model, input_shape) | ||
|
||
print(analysis_results['out_table']) | ||
print(analysis_results['out_arch']) | ||
|
||
print("Model Flops:{}".format(analysis_results['flops_str'])) | ||
print("Model Parameters:{}".format(analysis_results['params_str'])) | ||
``` | ||
|
||
### Description of Results | ||
|
||
The return outputs is dict, which contains the following keys: | ||
|
||
- `flops`: number of total flops, e.g., 10000, 10000 | ||
- `flops_str`: with formatted string, e.g., 1.0G, 100M | ||
- `params`: number of total parameters, e.g., 10000, 10000 | ||
- `params_str`: with formatted string, e.g., 1.0G, 100M | ||
- `activations`: number of total activations, e.g., 10000, 10000 | ||
- `activations_str`: with formatted string, e.g., 1.0G, 100M | ||
- `out_table`: print related information by table | ||
|
||
``` | ||
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━┓ | ||
┃ module ┃ #parameters or shape ┃ #flops ┃ #activations ┃ | ||
┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━┩ | ||
│ model │ 0.44K │ 0.4K │ 40 │ | ||
│ fc1 │ 0.11K │ 100 │ 10 │ | ||
│ fc1.weight │ (10, 10) │ │ │ | ||
│ fc1.bias │ (10,) │ │ │ | ||
│ fc2 │ 0.11K │ 100 │ 10 │ | ||
│ fc2.weight │ (10, 10) │ │ │ | ||
│ fc2.bias │ (10,) │ │ │ | ||
│ inner │ 0.22K │ 0.2K │ 20 │ | ||
│ inner.fc1 │ 0.11K │ 100 │ 10 │ | ||
│ inner.fc1.weight │ (10, 10) │ │ │ | ||
│ inner.fc1.bias │ (10,) │ │ │ | ||
│ inner.fc2 │ 0.11K │ 100 │ 10 │ | ||
│ inner.fc2.weight │ (10, 10) │ │ │ | ||
│ inner.fc2.bias │ (10,) │ │ │ | ||
└─────────────────────┴──────────────────────┴────────┴──────────────┘ | ||
``` | ||
|
||
- `out_arch`: print related information by network layers | ||
|
||
```bash | ||
TestNet( | ||
#params: 0.44K, #flops: 0.4K, #acts: 40 | ||
(fc1): Linear( | ||
in_features=10, out_features=10, bias=True | ||
#params: 0.11K, #flops: 100, #acts: 10 | ||
) | ||
(fc2): Linear( | ||
in_features=10, out_features=10, bias=True | ||
#params: 0.11K, #flops: 100, #acts: 10 | ||
) | ||
(inner): InnerNet( | ||
#params: 0.22K, #flops: 0.2K, #acts: 20 | ||
(fc1): Linear( | ||
in_features=10, out_features=10, bias=True | ||
#params: 0.11K, #flops: 100, #acts: 10 | ||
) | ||
(fc2): Linear( | ||
in_features=10, out_features=10, bias=True | ||
#params: 0.11K, #flops: 100, #acts: 10 | ||
) | ||
) | ||
) | ||
``` | ||
|
||
## Usage Example 2: Model built with mmengine | ||
|
||
### Code | ||
|
||
```python | ||
import torch.nn.functional as F | ||
import torchvision | ||
from mmengine.model import BaseModel | ||
from mmengine.analysis import get_model_complexity_info | ||
|
||
|
||
class MMResNet50(BaseModel): | ||
def __init__(self): | ||
super().__init__() | ||
self.resnet = torchvision.models.resnet50() | ||
|
||
def forward(self, imgs, labels=None, mode='tensor'): | ||
x = self.resnet(imgs) | ||
if mode == 'loss': | ||
return {'loss': F.cross_entropy(x, labels)} | ||
elif mode == 'predict': | ||
return x, labels | ||
elif mode == 'tensor': | ||
return x | ||
|
||
|
||
input_shape = (3, 224, 224) | ||
model = MMResNet50() | ||
|
||
analysis_results = get_model_complexity_info(model, input_shape) | ||
|
||
|
||
print("Model Flops:{}".format(analysis_results['flops_str'])) | ||
print("Model Parameters:{}".format(analysis_results['params_str'])) | ||
``` | ||
|
||
### Output | ||
|
||
```bash | ||
Model Flops:4.145G | ||
Model Parameters:25.557M | ||
``` | ||
|
||
## Interface | ||
|
||
We provide more options to support custom output | ||
|
||
- `model`: (nn.Module) the model to be analyzed | ||
- `input_shape`: (tuple) the shape of the input, e.g., (3, 224, 224) | ||
- `inputs`: (optional: torch.Tensor), if given, `input_shape` will be ignored | ||
- `show_table`: (bool) whether return the statistics in the form of table, default: True | ||
- `show_arch`: (bool) whether return the statistics in the form of table, default: True |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
.. role:: hidden | ||
:class: hidden-section | ||
|
||
mmengine.analysis | ||
=================================== | ||
|
||
.. contents:: mmengine.analysis | ||
:depth: 2 | ||
:local: | ||
:backlinks: top | ||
|
||
.. currentmodule:: mmengine.analysis | ||
|
||
.. autosummary:: | ||
:toctree: generated | ||
:nosignatures: | ||
:template: classtemplate.rst | ||
|
||
ActivationAnalyzer | ||
FlopAnalyzer | ||
|
||
.. autosummary:: | ||
:toctree: generated | ||
:nosignatures: | ||
|
||
activation_count | ||
flop_count | ||
parameter_count | ||
parameter_count_table | ||
get_model_complexity_info |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
.. role:: hidden | ||
:class: hidden-section | ||
|
||
mmengine.analysis | ||
=================================== | ||
|
||
.. contents:: mmengine.analysis | ||
:depth: 2 | ||
:local: | ||
:backlinks: top | ||
|
||
.. currentmodule:: mmengine.analysis | ||
|
||
.. autosummary:: | ||
:toctree: generated | ||
:nosignatures: | ||
:template: classtemplate.rst | ||
|
||
ActivationAnalyzer | ||
FlopAnalyzer | ||
|
||
.. autosummary:: | ||
:toctree: generated | ||
:nosignatures: | ||
|
||
activation_count | ||
flop_count | ||
parameter_count | ||
parameter_count_table | ||
get_model_complexity_info |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from .complexity_analysis import (ActivationAnalyzer, FlopAnalyzer, | ||
activation_count, flop_count, | ||
parameter_count, parameter_count_table) | ||
from .print_helper import get_model_complexity_info | ||
|
||
__all__ = [ | ||
'FlopAnalyzer', 'ActivationAnalyzer', 'flop_count', 'activation_count', | ||
'parameter_count', 'parameter_count_table', 'get_model_complexity_info' | ||
] |
Oops, something went wrong.