Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Add CMMLU dataset #91

Merged
merged 6 commits into from
Jul 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions configs/datasets/cmmlu/cmmlu_gen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
from mmengine.config import read_base

with read_base():
from .cmmlu_gen_ffe7c0 import cmmlu_datasets # noqa: F401, F403
122 changes: 122 additions & 0 deletions configs/datasets/cmmlu/cmmlu_gen_ffe7c0.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CMMLUDataset
from opencompass.utils.text_postprocessors import first_capital_postprocess

cmmlu_subject_mapping = {
'agronomy': '农学',
'anatomy': '解剖学',
'ancient_chinese': '古汉语',
'arts': '艺术学',
'astronomy': '天文学',
'business_ethics': '商业伦理',
'chinese_civil_service_exam': '中国公务员考试',
'chinese_driving_rule': '中国驾驶规则',
'chinese_food_culture': '中国饮食文化',
'chinese_foreign_policy': '中国外交政策',
'chinese_history': '中国历史',
'chinese_literature': '中国文学',
'chinese_teacher_qualification': '中国教师资格',
'clinical_knowledge': '临床知识',
'college_actuarial_science': '大学精算学',
'college_education': '大学教育学',
'college_engineering_hydrology': '大学工程水文学',
'college_law': '大学法律',
'college_mathematics': '大学数学',
'college_medical_statistics': '大学医学统计',
'college_medicine': '大学医学',
'computer_science': '计算机科学',
'computer_security': '计算机安全',
'conceptual_physics': '概念物理学',
'construction_project_management': '建设工程管理',
'economics': '经济学',
'education': '教育学',
'electrical_engineering': '电气工程',
'elementary_chinese': '小学语文',
'elementary_commonsense': '小学常识',
'elementary_information_and_technology': '小学信息技术',
'elementary_mathematics': '初等数学',
'ethnology': '民族学',
'food_science': '食品科学',
'genetics': '遗传学',
'global_facts': '全球事实',
'high_school_biology': '高中生物',
'high_school_chemistry': '高中化学',
'high_school_geography': '高中地理',
'high_school_mathematics': '高中数学',
'high_school_physics': '高中物理学',
'high_school_politics': '高中政治',
'human_sexuality': '人类性行为',
'international_law': '国际法学',
'journalism': '新闻学',
'jurisprudence': '法理学',
'legal_and_moral_basis': '法律与道德基础',
'logical': '逻辑学',
'machine_learning': '机器学习',
'management': '管理学',
'marketing': '市场营销',
'marxist_theory': '马克思主义理论',
'modern_chinese': '现代汉语',
'nutrition': '营养学',
'philosophy': '哲学',
'professional_accounting': '专业会计',
'professional_law': '专业法学',
'professional_medicine': '专业医学',
'professional_psychology': '专业心理学',
'public_relations': '公共关系',
'security_study': '安全研究',
'sociology': '社会学',
'sports_science': '体育学',
'traditional_chinese_medicine': '中医中药',
'virology': '病毒学',
'world_history': '世界历史',
'world_religions': '世界宗教'
}


cmmlu_all_sets = list(cmmlu_subject_mapping.keys())

cmmlu_datasets = []
for _name in cmmlu_all_sets:
_ch_name = cmmlu_subject_mapping[_name]
cmmlu_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(
begin="</E>",
round=[
dict(
role="HUMAN",
prompt=
f"以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。\n题目:{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}"
),
dict(role="BOT", prompt='答案是: {answer}'),
]),
ice_token="</E>",
),
retriever=dict(type=FixKRetriever),
inferencer=dict(type=GenInferencer, fix_id_list=[0, 1, 2, 3, 4]),
)

cmmlu_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_capital_postprocess))

cmmlu_datasets.append(
dict(
type=CMMLUDataset,
path="./data/cmmlu/",
name=_name,
abbr=f"cmmlu-{_name}",
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
test_split='test'),
infer_cfg=cmmlu_infer_cfg,
eval_cfg=cmmlu_eval_cfg,
))

del _name, _ch_name
4 changes: 4 additions & 0 deletions configs/datasets/cmmlu/cmmlu_ppl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
from mmengine.config import read_base

with read_base():
from .cmmlu_ppl_fd1f2f import cmmlu_datasets # noqa: F401, F403
122 changes: 122 additions & 0 deletions configs/datasets/cmmlu/cmmlu_ppl_fd1f2f.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CMMLUDataset
from opencompass.utils.text_postprocessors import first_capital_postprocess

cmmlu_subject_mapping = {
'agronomy': '农学',
'anatomy': '解剖学',
'ancient_chinese': '古汉语',
'arts': '艺术学',
'astronomy': '天文学',
'business_ethics': '商业伦理',
'chinese_civil_service_exam': '中国公务员考试',
'chinese_driving_rule': '中国驾驶规则',
'chinese_food_culture': '中国饮食文化',
'chinese_foreign_policy': '中国外交政策',
'chinese_history': '中国历史',
'chinese_literature': '中国文学',
'chinese_teacher_qualification': '中国教师资格',
'clinical_knowledge': '临床知识',
'college_actuarial_science': '大学精算学',
'college_education': '大学教育学',
'college_engineering_hydrology': '大学工程水文学',
'college_law': '大学法律',
'college_mathematics': '大学数学',
'college_medical_statistics': '大学医学统计',
'college_medicine': '大学医学',
'computer_science': '计算机科学',
'computer_security': '计算机安全',
'conceptual_physics': '概念物理学',
'construction_project_management': '建设工程管理',
'economics': '经济学',
'education': '教育学',
'electrical_engineering': '电气工程',
'elementary_chinese': '小学语文',
'elementary_commonsense': '小学常识',
'elementary_information_and_technology': '小学信息技术',
'elementary_mathematics': '初等数学',
'ethnology': '民族学',
'food_science': '食品科学',
'genetics': '遗传学',
'global_facts': '全球事实',
'high_school_biology': '高中生物',
'high_school_chemistry': '高中化学',
'high_school_geography': '高中地理',
'high_school_mathematics': '高中数学',
'high_school_physics': '高中物理学',
'high_school_politics': '高中政治',
'human_sexuality': '人类性行为',
'international_law': '国际法学',
'journalism': '新闻学',
'jurisprudence': '法理学',
'legal_and_moral_basis': '法律与道德基础',
'logical': '逻辑学',
'machine_learning': '机器学习',
'management': '管理学',
'marketing': '市场营销',
'marxist_theory': '马克思主义理论',
'modern_chinese': '现代汉语',
'nutrition': '营养学',
'philosophy': '哲学',
'professional_accounting': '专业会计',
'professional_law': '专业法学',
'professional_medicine': '专业医学',
'professional_psychology': '专业心理学',
'public_relations': '公共关系',
'security_study': '安全研究',
'sociology': '社会学',
'sports_science': '体育学',
'traditional_chinese_medicine': '中医中药',
'virology': '病毒学',
'world_history': '世界历史',
'world_religions': '世界宗教'
}


cmmlu_all_sets = list(cmmlu_subject_mapping.keys())

cmmlu_datasets = []
for _name in cmmlu_all_sets:
_ch_name = cmmlu_subject_mapping[_name]
cmmlu_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template={
answer: dict(
begin="</E>",
round=[
dict(
role="HUMAN",
prompt=f"以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。\n题目:{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}"
),
dict(role="BOT", prompt=f'答案是: {answer}'),
])
for answer in ["A", "B", "C", "D"]
},
ice_token="</E>",
),
retriever=dict(type=FixKRetriever),
inferencer=dict(type=PPLInferencer, fix_id_list=[0, 1, 2, 3, 4]),
)

cmmlu_eval_cfg = dict(evaluator=dict(type=AccEvaluator))

cmmlu_datasets.append(
dict(
type=CMMLUDataset,
path="./data/cmmlu/",
name=_name,
abbr=f"cmmlu-{_name}",
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
test_split='test'),
infer_cfg=cmmlu_infer_cfg,
eval_cfg=cmmlu_eval_cfg,
))

del _name, _ch_name
1 change: 1 addition & 0 deletions opencompass/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from .chid import * # noqa: F401, F403
from .civilcomments import * # noqa: F401, F403
from .cluewsc import * # noqa: F401, F403
from .cmmlu import * # noqa: F401, F403
from .cmnli import * # noqa: F401, F403
from .cmrc import * # noqa: F401, F403
from .commonsenseqa import * # noqa: F401, F403
Expand Down
34 changes: 34 additions & 0 deletions opencompass/datasets/cmmlu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
import csv
import os.path as osp

from datasets import Dataset, DatasetDict

from opencompass.registry import LOAD_DATASET

from .base import BaseDataset


@LOAD_DATASET.register_module()
class CMMLUDataset(BaseDataset):

@staticmethod
def load(path: str, name: str):
dataset = DatasetDict()
for split in ['dev', 'test']:
raw_data = []
filename = osp.join(path, split, f'{name}.csv')
with open(filename, encoding='utf-8') as f:
reader = csv.reader(f)
_ = next(reader) # skip the header
for row in reader:
assert len(row) == 7
raw_data.append({
'question': row[1],
'A': row[2],
'B': row[3],
'C': row[4],
'D': row[5],
'answer': row[6],
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
5 changes: 5 additions & 0 deletions opencompass/runners/slurm.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ class SlurmRunner(BaseRunner):
retry (int): Number of retries if the job failed. Defaults to 2.
partition (str): Slurm partition name. Defaults to None.
quotatype (str): Slurm quota type. Defaults to None.
qos (str): Slurm quality of service. Defaults to None.
debug (bool): Whether to run in debug mode. Defaults to False.
lark_bot_url (str): Lark bot url. Defaults to None.
"""
Expand All @@ -38,13 +39,15 @@ def __init__(self,
retry: int = 2,
partition: str = None,
quotatype: str = None,
qos: str = None,
debug: bool = False,
lark_bot_url: str = None):
super().__init__(task=task, debug=debug, lark_bot_url=lark_bot_url)
self.max_num_workers = max_num_workers
self.retry = retry
self.partition = partition
self.quotatype = quotatype
self.qos = qos

def launch(self, tasks: List[Dict[str, Any]]) -> List[Tuple[str, int]]:
"""Launch multiple tasks.
Expand Down Expand Up @@ -97,6 +100,8 @@ def _launch(self, task_cfg: ConfigDict, random_sleep: bool = True):
tmpl += f' -p {self.partition}'
if self.quotatype:
tmpl += f' --quotatype={self.quotatype}'
if self.qos:
tmpl += f' --qos={self.qos}'
if num_gpus > 0:
tmpl += f' --gres=gpu:{num_gpus}'
tmpl += f" -N1 -J '{task_name[:512]}'" + ' {task_cmd}'
Expand Down
6 changes: 6 additions & 0 deletions run.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,6 +129,10 @@ def parse_slurm_args(slurm_parser):
help='Slurm quota type',
default=None,
type=str)
slurm_parser.add_argument('--qos',
help='Slurm quality of service',
default=None,
type=str)


def parse_dlc_args(dlc_parser):
Expand Down Expand Up @@ -286,6 +290,7 @@ def exec_infer_runner(tasks, args, cfg):
max_num_workers=args.max_num_workers,
partition=args.partition,
quotatype=args.quotatype,
qos=args.qos,
retry=args.retry,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
Expand All @@ -311,6 +316,7 @@ def exec_eval_runner(tasks, args, cfg):
max_num_workers=args.max_num_workers,
partition=args.partition,
quotatype=args.quotatype,
qos=args.qos,
retry=args.retry,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
Expand Down