Skip to content

8 3090 GPU LORA OOM issue #337

@Kkkkkz21

Description

@Kkkkkz21

torchrun --nproc_per_node="8"
--nnodes="1"
--node_rank="0"
--master_addr="127.0.0.1"
--master_port="12349"
src/open_r1/grpo_jsonl.py
--use_vllm False
--output_dir ${REPO_HOME}/checkpoints/rl/${EXP_NAME}
--resume_from_checkpoint True
--model_name_or_path $model_path
--data_file_paths $data_paths
--image_folders $image_folders
--is_reward_customized_from_vlm_module $is_reward_customized_from_vlm_module
--task_type $TASK_TYPE
--per_device_train_batch_size 1
--gradient_accumulation_steps 2
--gradient_checkpointing true
--logging_steps 2
--num_train_epochs 2
--bf16
--attn_implementation flash_attention_2
--run_name ${EXP_NAME}
--data_seed 42
--save_steps 20
--num_generations 4
--max_completion_length 384
--reward_funcs format_count relative_error squares
--beta 0.04
--report_to wandb
--dataset-name this_is_not_used
--deepspeed ${REPO_HOME}/src/open-r1-multimodal/local_scripts/zero3_offload.json
--learning_rate 1e-5
--use_peft true
--lora_r 64
--lora_alpha 128
--lora_dropout 0.05
--lora_task_type CAUSAL_LM
--freeze_vision_modules true
--lora_resume_checkpoint ${lora_resume_checkpoint}\

echo "Training completed for ${EXP_NAME}"
I want to know why this configuration using 8-card 3090 for Qwen2.5-VL-7B-Instruction's Lora fine-tuning also results in memory overflow. I don't know if anyone is the same, thank you for your help!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions