Skip to content

Commit

Permalink
Merge pull request #1945 from numbbo/development
Browse files Browse the repository at this point in the history
Merge into master branch for 2.3.3 release
  • Loading branch information
brockho authored Mar 26, 2020
2 parents f161fea + 2d7eeab commit 014235f
Show file tree
Hide file tree
Showing 25 changed files with 350 additions and 355 deletions.
20 changes: 10 additions & 10 deletions code-postprocessing/cocopp/bestalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ class BestAlgSet(DataSet):
numbers of function evaluations for evals or function values for
funvals.
Known bug: algorithms where the aRT is NaN or Inf are not taken into
Known bug: algorithms where the ERT is NaN or Inf are not taken into
account!?
"""
Expand Down Expand Up @@ -148,7 +148,7 @@ def __init__(self, dict_alg, algId='Virtual Best Algorithm'):
sortedAlgs = list(dict_alg.keys())
# algorithms will be sorted along sortedAlgs which is now a fixed list

# Align aRT
# Align ERT
erts = list(np.transpose(np.vstack([dict_alg[i].target, dict_alg[i].ert]))
for i in sortedAlgs)
res = readalign.alignArrayData(readalign.HArrayMultiReader(erts))
Expand All @@ -168,7 +168,7 @@ def __init__(self, dict_alg, algId='Virtual Best Algorithm'):
continue # TODO: don't disregard these entries
if tmpert == currentbestert:
# TODO: what do we do in case of ties?
# look at function values corresponding to the aRT?
# look at function values corresponding to the ERT?
# Look at the function evaluations? the success ratio?
pass
elif tmpert < currentbestert:
Expand Down Expand Up @@ -308,11 +308,11 @@ def createDictInstance(self):
return dictinstance

def detERT(self, targets):
"""Determine the average running time to reach target values.
"""Determine the expected running time to reach target values.
:keyword list targets: target function values of interest
:returns: list of average running times corresponding to the
:returns: list of expected running times corresponding to the
targets.
"""
Expand Down Expand Up @@ -644,7 +644,7 @@ def getAllContributingAlgorithmsToBest(algnamelist, target_lb=1e-8,
target_ub=1e2):
"""Computes first the artificial best algorithm from given algorithm list
algnamelist, constructed by extracting for each target/function pair
thalgorithm with best aRT among the given ones. Returns then the list
thalgorithm with best ERT among the given ones. Returns then the list
of algorithms that are contributing to the definition of the best
algorithm, separated by dimension, and sorted by importance (i.e. with
respect to the number of target/function pairs where each algorithm is
Expand Down Expand Up @@ -713,9 +713,9 @@ def extractBestAlgorithms(args=algs2009, f_factor=2,
"""Returns (and prints) per dimension a list of algorithms within
algorithm list args that contains an algorithm if for any
dimension/target/function pair this algorithm:
- is the best algorithm wrt aRT
- its own aRT lies within a factor f_factor of the best aRT
- there is no algorithm within a factor of f_factor of the best aRT
- is the best algorithm wrt ERT
- its own ERT lies within a factor f_factor of the best ERT
- there is no algorithm within a factor of f_factor of the best ERT
and the current algorithm is the second best.
"""
Expand Down Expand Up @@ -750,7 +750,7 @@ def extractBestAlgorithms(args=algs2009, f_factor=2,
# add best for this target:
selectedAlgsPerProblemDF.append(best.algs[i])

# add second best or all algorithms that have an aRT
# add second best or all algorithms that have an ERT
# within a factor of f_factor of the best:
secondbest_ERT = np.infty
secondbest_str = ''
Expand Down
18 changes: 9 additions & 9 deletions code-postprocessing/cocopp/captions.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ def get_reference_algorithm_text(best_algorithm_mandatory=True):

return text

def get_best_art_text():
def get_best_ert_text():
text = ''
testbed = testbedsettings.current_testbed
if testbed.reference_algorithm_filename:
Expand All @@ -90,19 +90,19 @@ def get_best_art_text():
or testbed.name == testbedsettings.testbed_name_bi):
if testbed.reference_algorithm_displayname:
if "best 2009" in testbed.reference_algorithm_displayname:
text = "best \\aRT\ measured during BBOB-2009"
text = "best \\ERT\ measured during BBOB-2009"
elif "best 2010" in testbed.reference_algorithm_displayname:
text = "best \\aRT\ measured during BBOB-2010"
text = "best \\ERT\ measured during BBOB-2010"
elif "best 2012" in testbed.reference_algorithm_displayname:
text = "best \\aRT\ measured during BBOB-2012"
text = "best \\ERT\ measured during BBOB-2012"
elif "best 2013" in testbed.reference_algorithm_displayname:
text = "best \\aRT\ measured during BBOB-2013"
text = "best \\ERT\ measured during BBOB-2013"
elif "best 2016" in testbed.reference_algorithm_displayname:
text = "best \\aRT\ measured during BBOB-2016"
text = "best \\ERT\ measured during BBOB-2016"
elif "best 2009-16" in testbed.reference_algorithm_displayname:
text = "best \\aRT\ measured during BBOB-2009-16"
text = "best \\ERT\ measured during BBOB-2009-16"
else:
text = "the \\aRT\ of the reference algorithm"
text = "the \\ERT\ of the reference algorithm"
else:
raise NotImplementedError('reference algorithm not supported for this testbed')
else:
Expand Down Expand Up @@ -161,7 +161,7 @@ def get_light_brown_line_text(testbedname):
'!!NUM-OF-TARGETS-IN-ECDF!!': lambda: str(len(testbedsettings.current_testbed.pprldmany_target_values)),
'!!TARGET-RANGES-IN-ECDF!!': lambda: str(testbedsettings.current_testbed.pprldmany_target_range_latex),
'!!TOTAL-NUM-OF-FUNCTIONS!!': lambda: str(testbedsettings.current_testbed.last_function_number - testbedsettings.current_testbed.first_function_number + 1),
'!!BEST-ART!!': lambda: get_best_art_text(),
'!!BEST-ERT!!': lambda: get_best_ert_text(),
'!!NBTARGETS-SCATTER!!': lambda: str(len(testbedsettings.current_testbed.ppscatter_target_values)),
'!!NBLOW!!': lambda: get_nblow(),
'!!NBUP!!': lambda: get_nbup()
Expand Down
2 changes: 1 addition & 1 deletion code-postprocessing/cocopp/cococommands.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@
Number of trials: 15
Final target Df: 1e-08
min / max number of evals per trial: 224 / 333
evals/DIM: best 15% 50% 85% max | aRT/DIM nsucc
evals/DIM: best 15% 50% 85% max | ERT/DIM nsucc
---Df---|-----------------------------------------|----------------
1.0e+03 | 0 0 0 0 0 | 0.5 15
1.0e+01 | 0 0 2 8 10 | 2.9 15
Expand Down
6 changes: 3 additions & 3 deletions code-postprocessing/cocopp/comp2/ppfig2.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
#! /usr/bin/env python
# -*- coding: utf-8 -*-

"""Creates aRT-ratio comparison figures (ECDF) and convergence figures for the comparison of 2 algorithms.
"""Creates ERT-ratio comparison figures (ECDF) and convergence figures for the comparison of 2 algorithms.
Scale up figures for two algorithms can be done with compall/ppfigs.py
Expand Down Expand Up @@ -130,7 +130,7 @@ def beautify(xmin=None):

# Annotate figure
ax.set_xlabel('log10(Delta ftarget)')
ax.set_ylabel(r'log10(aRT1/aRT0) or ~#succ') # TODO: replace hard-coded 15
ax.set_ylabel(r'log10(ERT1/ERT0) or ~#succ') # TODO: replace hard-coded 15
ax.grid(True)

#Tick label handling
Expand Down Expand Up @@ -243,7 +243,7 @@ def annotate(entry0, entry1, dim, minfvalue=1e-8, nbtests=1):
transform=trans, clip_on=False)

def main(dsList0, dsList1, minfvalue=1e-8, outputdir=''):
"""Returns aRT1/aRT0 comparison figure."""
"""Returns ERT1/ERT0 comparison figure."""

#plt.rc("axes", labelsize=20, titlesize=24)
#plt.rc("xtick", labelsize=20)
Expand Down
33 changes: 14 additions & 19 deletions code-postprocessing/cocopp/comp2/pprldistr2.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,13 +38,14 @@ def beautify(handles):

axisHandle = plt.gca()
axisHandle.set_xscale('log')
plt.axvline(1, ls='-', color='k'); # symmetry line for aRT1/aRT0 = 1
xlim = min(max(numpy.abs(numpy.log10(plt.xlim()))),
numpy.ceil(numpy.log10(sys.float_info.max))-1) # correction of
# numerical issues
# with bbob-biobj
# test
xlim = (min(0.1, 10.**(-xlim)), max(10., 10.**(xlim)))
plt.axvline(1, ls='-', color='k'); # symmetry line for ERT1/ERT0 = 1

xlim = plt.xlim()
xlim = numpy.maximum(xlim[0], 1e-9), numpy.minimum(xlim[1], 1e9)
xlim = numpy.minimum(xlim[0], 1. / 10.01), numpy.maximum(xlim[1], 10.01)
xlim = max(numpy.abs(numpy.log10(xlim)))
xlim = (10 ** (-xlim), 10 ** xlim)

plt.axhline(0.5, ls=':', color='k', lw=2) # symmetry line at y=0.5
plt.xlim(xlim)
plt.yticks(numpy.array((0., 0.25, 0.5, 0.75, 1.0)),
Expand All @@ -53,12 +54,7 @@ def beautify(handles):
axisHandle.set_xlabel('log10 of FEvals ratio')
axisHandle.set_ylabel('proportion of trials')
axisHandle.grid(True)
xticks = axisHandle.get_xticks()
newxticks = []
for i in xticks:
if i > 0 and i < numpy.inf:
newxticks.append('%d' % round(numpy.log10(i)))
axisHandle.set_xticklabels(newxticks)


# Prolong to the boundary...
xmin, xmax = plt.xlim()
Expand All @@ -71,7 +67,7 @@ def beautify(handles):
if len(xdata) == 0 or len(ydata) == 0:
continue
if not hasattr(xdata, 'dtype') or xdata.dtype != float:
xdata = numpy.array(xdata, dtype=float)
xdata = numpy.array(xdata, dtype=float)
xdata = numpy.insert(xdata, 0, xmin)
xdata = numpy.insert(xdata, len(xdata), xmax)
ydata = numpy.insert(ydata, 0, ydata[0])
Expand All @@ -80,12 +76,11 @@ def beautify(handles):

toolsdivers.legend(loc='best')

# Inverted xticks
x = axisHandle.get_xticks()
# Operation for reverting the ticks for x < 1
x[x<1] = sorted(1/(x[x<1]*numpy.power(10, -2*numpy.floor(numpy.log10(x[x<1]))-1)))
x = x[(x<xmax) * (x>xmin)] # why?
x = numpy.asarray(axisHandle.get_xticks())
axisHandle.set_xticklabels([str(int(numpy.log10(xx))) for xx in x])
axisHandle.set_xticks(x)
plt.xlim(xlim)


def computeERT(fevals, maxevals):
data = fevals.copy()
Expand Down
20 changes: 10 additions & 10 deletions code-postprocessing/cocopp/comp2/ppscatter.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,9 @@
# -*- coding: utf-8 -*-
"""Scatter Plots.
For two algorithms, this generates the scatter plot of log(aRT1(df)) vs.
log(aRT0(df)), where aRT0(df) is the aRT of the reference algorithm,
aRT1(df) is the aRT of the algorithm of concern, both for target
For two algorithms, this generates the scatter plot of log(ERT1(df)) vs.
log(ERT0(df)), where ERT0(df) is the ERT of the reference algorithm,
ERT1(df) is the ERT of the algorithm of concern, both for target
precision df.
Different symbols are used for different dimension (see
Expand All @@ -20,8 +20,8 @@
"""
from __future__ import absolute_import

"""For two algorithms, aRTs(given target function value) can also be
plotted in a scatter plot (log(aRT0) vs. log(aRT1)), which results in a
"""For two algorithms, ERTs(given target function value) can also be
plotted in a scatter plot (log(ERT0) vs. log(ERT1)), which results in a
very attractive presentation, see the slides of Frank Hutter at
http://www.msr-inria.inria.fr/events-news/first-search-biology-day. The
advantage is that the absolute values do not get lost. The disadvantage
Expand Down Expand Up @@ -57,14 +57,14 @@

def prepare_figure_caption():

caption_start_fixed = r"""Average running time (\aRT\ in $\log_{10}$ of number of function evaluations)
caption_start_fixed = r"""Expected running time (\ERT\ in $\log_{10}$ of number of function evaluations)
of \algorithmA\ ($y$-axis) versus \algorithmB\ ($x$-axis) for $!!NBTARGETS-SCATTER!!$ target values
$!!DF!! \in [!!NBLOW!!, !!NBUP!!]$ in each dimension on functions #1. """

caption_start_rlbased = r"""Average running time (\aRT\ in $\log_{10}$ of number of function evaluations)
caption_start_rlbased = r"""Expected running time (\ERT\ in $\log_{10}$ of number of function evaluations)
of \algorithmA\ ($y$-axis) versus \algorithmB\ ($x$-axis) for $!!NBTARGETS-SCATTER!!$ runlength-based target
values for budgets between $!!NBLOW!!$ and $!!NBUP!!$ evaluations.
Each runlength-based target $!!F!!$-value is chosen such that the \aRT{}s of
Each runlength-based target $!!F!!$-value is chosen such that the \ERT{}s of
!!THE-REF-ALG!! for the given and a slightly easier
target bracket the reference budget. """

Expand Down Expand Up @@ -177,14 +177,14 @@ def main(dsList0, dsList1, outputdir, settings):
entry1 = dictDim1[d][0] # should be only one element
except (IndexError, KeyError):
continue
if linewidth: # plot all reliable aRT values as a line
if linewidth: # plot all reliable ERT values as a line
all_targets = np.array(sorted(set(entry0.target).union(entry1.target), reverse=True))
assert entry0.detSuccessRates([all_targets[0]]) == 1.0
assert entry1.detSuccessRates([all_targets[0]]) == 1.0
all_targets = all_targets[np.where(all_targets <= targets((f, d))[0])[0]] #
xdata_all = np.array(entry0.detERT(all_targets))
ydata_all = np.array(entry1.detERT(all_targets))
# idx of reliable targets: last index where success rate >= 1/2 and aRT <= maxevals
# idx of reliable targets: last index where success rate >= 1/2 and ERT <= maxevals
idx = []
for ari in (np.where(entry0.detSuccessRates(all_targets) >= 0.5)[0],
np.where(entry1.detSuccessRates(all_targets) >= 0.5)[0],
Expand Down
10 changes: 5 additions & 5 deletions code-postprocessing/cocopp/compall/ppfigs.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""Creates aRTs and convergence figures for multiple algorithms."""
"""Creates ERTs and convergence figures for multiple algorithms."""
from __future__ import absolute_import, print_function
import os
import matplotlib.pyplot as plt
Expand Down Expand Up @@ -49,15 +49,15 @@ def fix_styles(plotting_styles, line_styles):

def prepare_scaling_figure_caption():

scaling_figure_caption_start_fixed = (r"""Average running time (\aRT\ in number of $f$-evaluations
scaling_figure_caption_start_fixed = (r"""Expected running time (\ERT\ in number of $f$-evaluations
as $\log_{10}$ value), divided by dimension for target function value $!!PPFIGS-FTARGET!!$
versus dimension. Slanted grid lines indicate quadratic scaling with the dimension. """
)

scaling_figure_caption_start_rlbased = (r"""Average running time (\aRT\ in number of $f$-evaluations
scaling_figure_caption_start_rlbased = (r"""Expected running time (\ERT\ in number of $f$-evaluations
as $\log_{10}$ value) divided by dimension versus dimension. The target function value
is chosen such that !!THE-REF-ALG!! just failed to achieve
an \aRT\ of $!!PPFIGS-FTARGET!!\times\DIM$. """
an \ERT\ of $!!PPFIGS-FTARGET!!\times\DIM$. """
)

scaling_figure_caption_end = (
Expand Down Expand Up @@ -434,7 +434,7 @@ def generateData(dataSet, target):


def main(dictAlg, html_file_prefix, sorted_algorithms=None, output_dir='ppdata', latex_commands_file=''):
"""From a DataSetList, returns figures showing the scaling: aRT/dim vs dim.
"""From a DataSetList, returns figures showing the scaling: ERT/dim vs dim.
One function and one target per figure.
Expand Down
8 changes: 4 additions & 4 deletions code-postprocessing/cocopp/compall/ppperfprof.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ def beautify():
a.set_xscale('log')
#Tick label handling

plt.xlabel('log10 of (aRT / aRTref)')
plt.xlabel('log10 of (ERT / ERTref)')
plt.ylabel('Proportion of functions')
logxticks()
beautifyECDF()
Expand Down Expand Up @@ -123,9 +123,9 @@ def plot(dsList, dsref, targets=defaulttargets, istoolsstats=False, **kwargs):
"""Generates a graph showing the performance profile of an algorithm.
We display the empirical cumulative distribution function ECDF of
the bootstrapped distribution of the average running time (aRT)
the bootstrapped distribution of the expected running time (ERT)
for an algorithm to reach the function value :py:data:`targets`
normalized by the aRT of the reference algorithm for these
normalized by the ERT of the reference algorithm for these
targets.
:param DataSetList dsList: data set for one algorithm
Expand All @@ -142,7 +142,7 @@ def plot(dsList, dsref, targets=defaulttargets, istoolsstats=False, **kwargs):
for entry in dsList:
for t in targets:
# TODO: alternative: min(dsref[(entry.dim, entry.funcId)].detEvals((t,))[0])
# is the min from the alg with the best aRT
# is the min from the alg with the best ERT
flg_ert = 1
if flg_ert:
normalizer = dsref[(entry.dim, entry.funcId)].detERT((t,))[0]
Expand Down
8 changes: 4 additions & 4 deletions code-postprocessing/cocopp/compall/pprldmany.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
#! /usr/bin/env python
# -*- coding: utf-8 -*-

"""Generates figure of the bootstrap distribution of aRT.
"""Generates figure of the bootstrap distribution of ERT.
The main method in this module generates figures of Empirical
Cumulative Distribution Functions of the bootstrap distribution of
the Average Running Time (aRT) divided by the dimension for many
the Expected Running Time (ERT) divided by the dimension for many
algorithms.
The outputs show the ECDFs of the running times of the simulated runs
Expand All @@ -20,7 +20,7 @@
import cocopp
# Empirical cumulative distribution function of bootstrapped aRT figure
# Empirical cumulative distribution function of bootstrapped ERT figure
ds = cocopp.load(cocopp.bbob.get('2009/BIPOP-CMA-ES'))
figure()
cocopp.compall.pprldmany.plot(ds) # must rather call main instead of plot?
Expand Down Expand Up @@ -555,7 +555,7 @@ def main(dictAlg, order=None, outputdir='.', info='default',
From a dictionary of :py:class:`DataSetList` sorted by algorithms,
generates the cumulative distribution function of the bootstrap
distribution of aRT for algorithms on multiple functions for
distribution of ERT for algorithms on multiple functions for
multiple targets altogether.
:param dict dictAlg: dictionary of :py:class:`DataSetList` instances
Expand Down
Loading

0 comments on commit 014235f

Please sign in to comment.