Skip to content
View nodematerial's full-sized avatar

Organizations

@techouse-inc

Block or report nodematerial

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
nodematerial/README.md

Name

Kota Noda (24 years old, Japanese)

Academic Background

Bachelor of Engineering (the University of Tokyo 2018 ~ 2022)
Master of Engineering (the University of Tokyo 2022 ~ 2024)

Work history

Software Engineer at Techouse, Inc. 2022/09 ~

Outputs

MD-GNN
abstructure

Achievements (Competitions)

Kaggle

Competitions Expert (silver🥈 × 2, bronze🥉 × 1, Highest Rank: 1076)

[ Competitions ]
BirdCLEF 2022 50 of 807 teams 🥈(solo)
American Express - Default Prediction 242 of 4875 teams 🥈
Santa 2020 - The Candy Cane Contest 80 of 788 teams 🥉(solo)

[ Repositories ]
Kaggle_amex, Kaggle_birdclef2022

atmaCup

atnacup#13 (Retail AI hackathon 1st stage) 4 of 127 teams

AtCoder

nodematerial
Algorithm: highest 970
Heuristic: highest 414

Researches

I used to major in material simulation&informatics
mainly deal with

  • Molecular dynamics (Masetr)
  • Deep Learning: GNN mainly (Masetr)
  • Microscophic image analysis (Bachelor)

Papers

卒業論文 : 画像解析と深層学習に基づく水性塗料成膜・硬化機構解明
Bachelor's thesis : Elucidation of film formation and curing mechanism of water-based paint based on image analysis and deep learning

修士論文 : 深層学習による分⼦動⼒学の物理量時間発展モデル

原著論文

  1. Prediction of potential energy profiles of molecular dynamic simulation by graph convolutional networks. Kota Noda, Yasushi Shibuta. Computational Materials Science. 229:112448, 2023.
  2. Predicting long-term trends in physical properties from short-term molecular dynamics simulations using long short-term memory. Kota Noda, Yasushi Shibuta. J Phys Condens Matter. 36:385902, 2024.

Presentations

深層⽣成モデルによる多結晶原⼦構造の特徴量抽出および復元 日本金属学会2022年秋期(第171回)講演大会 Kohei Sase, Kota Noda, Yasushi Shibuta

グラフニューラルネットワークを使用した深層学習モデルによる分子動力学シミュレーションの物理量予測 日本金属学会2023年秋期(第173回)講演大会 Kota Noda, Yasushi Shibuta

High-precision prediction of physical properties of molecular dynamic simulation using graph neural networks PRICM11 Kota Noda, Yasushi Shibuta

Skills

mainly: Python3, Ruby, C++, Ruby on Rails, Django
others: JavaScript, Go

Pinned Loading

  1. docs-jp docs-jp Public

    Forked from test-prof/docs-ja

    Japanese documentation

  2. Kaggle_birdclef2022 Kaggle_birdclef2022 Public

    code & solution of Kaggle BirdCLEF 2022 competition

    Python

  3. Kaggle_amex Kaggle_amex Public

    code & solution of Kaggle American Express - Default Prediction competition

    Python 3 1

  4. MD-GNN MD-GNN Public

    Implementation for "Prediction of potential energy profiles of molecular dynamic simulation by graph convolutional networks"

    Python 3