You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Portcullis stands for PORTable CULLing of Invalid Splice junctions from pre-aligned RNA-seq data. It is known that RNAseq mapping tools generate many invalid junction predictions, particularly in deep datasets with high coverage over splice sites. In order to address this, instead for creating a new RNAseq mapper, with a focus on SJ accuracy we created a tool that takes in a BAM file generated by an RNAseq mapper of the user’s own choice (e.g. Tophat2, Gsnap, STAR2 or HISAT2) as input (i.e. it’s portable). It then, analyses and quantifies all splice junctions in the file before, filtering (culling) those which are unlikely to be genuine. Portcullis output’s junctions in a variety of formats making it suitable for downstream analysis (such as differential splicing analysis and gene modelling) without additional work.
Are you going to work on this?
I added myself to the Assignees to facilitate tracking who is working on the module
The text was updated successfully, but these errors were encountered:
Is there an existing module for this?
Is there an open PR for this?
Is there an open issue for this?
Further Information
Portcullis stands for PORTable CULLing of Invalid Splice junctions from pre-aligned RNA-seq data. It is known that RNAseq mapping tools generate many invalid junction predictions, particularly in deep datasets with high coverage over splice sites. In order to address this, instead for creating a new RNAseq mapper, with a focus on SJ accuracy we created a tool that takes in a BAM file generated by an RNAseq mapper of the user’s own choice (e.g. Tophat2, Gsnap, STAR2 or HISAT2) as input (i.e. it’s portable). It then, analyses and quantifies all splice junctions in the file before, filtering (culling) those which are unlikely to be genuine. Portcullis output’s junctions in a variety of formats making it suitable for downstream analysis (such as differential splicing analysis and gene modelling) without additional work.
Are you going to work on this?
The text was updated successfully, but these errors were encountered: