-
Notifications
You must be signed in to change notification settings - Fork 66
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Running NewSegment properly #258
Open
mrahim
wants to merge
2
commits into
neurospin:master
Choose a base branch
from
mrahim:newsegment
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -75,11 +75,11 @@ def _configure_backends(spm_dir=None, matlab_exec=None, spm_mcr=None, | |
|
||
# prepare template TPMs | ||
tissue1 = ((os.path.join(SPM_DIR, tissue_path, 'TPM.nii'), 1), | ||
2, (True, True), (False, False)) | ||
2, (True, True), (True, True)) | ||
tissue2 = ((os.path.join(SPM_DIR, tissue_path, 'TPM.nii'), 2), | ||
2, (True, True), (False, False)) | ||
2, (True, True), (True, True)) | ||
tissue3 = ((os.path.join(SPM_DIR, tissue_path, 'TPM.nii'), 3), | ||
2, (True, False), (False, False)) | ||
2, (True, True), (True, True)) | ||
tissue4 = ((os.path.join(SPM_DIR, tissue_path, 'TPM.nii'), 4), | ||
3, (False, False), (False, False)) | ||
tissue5 = ((os.path.join(SPM_DIR, tissue_path, 'TPM.nii'), 5), | ||
|
@@ -664,6 +664,144 @@ def _do_subject_segment(subject_data, output_modulated_tpms=True, spm_dir=None, | |
return subject_data.sanitize() | ||
|
||
|
||
def _do_subject_newsegment(subject_data, output_modulated_tpms=True, | ||
spm_dir=None, matlab_exec=None, spm_mcr=None, | ||
normalize=False, caching=True, report=True, | ||
software="spm", hardlink_output=True): | ||
""" | ||
Wrapper for running spm.NewSegment with optional reporting. | ||
|
||
If subject_data has a `results_gallery` attribute, then QA thumbnails will | ||
be commited after this node is executed | ||
|
||
Parameters | ||
----------- | ||
subject_data: `SubjectData` object | ||
subject data whose anatomical image (subject_data.anat) is to be | ||
segmented | ||
|
||
output_modulated_tpms: bool, optional (default False) | ||
if set, then modulated TPMS will be produced (alongside unmodulated | ||
TPMs); this can be useful for VBM | ||
|
||
caching: bool, optional (default True) | ||
if true, then caching will be enabled | ||
|
||
normalize: bool, optional (default False) | ||
flag indicating whether warped brain compartments (gm, wm, csf) are to | ||
be generated (necessary if the caller wishes the brain later) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I don't understand. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is a flag related to |
||
|
||
report: bool, optional (default True) | ||
flag controlling whether post-preprocessing reports should be generated | ||
|
||
Returns | ||
------- | ||
subject_data: `SubjectData` object | ||
preprocessed subject_data | ||
|
||
New Attributes | ||
============== | ||
subject_data.nipype_results['segment']: Nipype output object | ||
(raw) result of running spm.Segment | ||
|
||
subject_data.gm: string | ||
path to subject's segmented gray matter image in native space | ||
|
||
subject_data.wm: string | ||
path to subject's segmented white matter image in native space | ||
|
||
subject_data.csf: string | ||
path to subject's CSF image in native space | ||
|
||
if normalize then the following additional data fiels are | ||
populated: | ||
|
||
subject_data.wgm: string | ||
path to subject's segmented gray matter image in standard space | ||
|
||
subject_data.wwm: string | ||
path to subject's segmented white matter image in standard space | ||
|
||
subject_data.wcsf: string | ||
path to subject's CSF image in standard space | ||
|
||
|
||
Notes | ||
----- | ||
Input subject_data is modified. | ||
|
||
""" | ||
|
||
# sanitize software choice | ||
software = software.lower() | ||
if software != "spm": | ||
raise NotImplementedError("Only SPM is supported; got '%s'" % software) | ||
|
||
# configure SPM back-end | ||
_configure_backends(spm_dir=spm_dir, matlab_exec=matlab_exec, | ||
spm_mcr=spm_mcr) | ||
assert SPM_DIR is not None and os.path.isdir(SPM_DIR), ( | ||
"SPM_DIR '%s' doesn't exist; you need to export it!" % SPM_DIR) | ||
|
||
# sanitize subject_data (do things like .nii.gz -> .nii conversion, etc.) | ||
subject_data.sanitize(niigz2nii=(software == "spm")) | ||
|
||
# prepare for smart caching | ||
if caching: | ||
cache_dir = os.path.join(subject_data.scratch, 'cache_dir') | ||
if not os.path.exists(cache_dir): | ||
os.makedirs(cache_dir) | ||
segment = NipypeMemory(base_dir=cache_dir).cache(spm.NewSegment) | ||
else: | ||
segment = spm.NewSegment().run | ||
|
||
# configure node | ||
if not normalize: | ||
gm_output_type = [False, False, True] | ||
wm_output_type = [False, False, True] | ||
csf_output_type = [False, False, True] | ||
else: | ||
gm_output_type = [output_modulated_tpms, True, True] | ||
wm_output_type = [output_modulated_tpms, True, True] | ||
csf_output_type = [output_modulated_tpms, True, True] | ||
# run node | ||
segment_result = segment( | ||
channel_files=subject_data.anat, | ||
write_deformation_fields=[True, True], | ||
tissues=TISSUES, | ||
ignore_exception=False | ||
) | ||
|
||
# failed node | ||
subject_data.nipype_results['segment'] = segment_result | ||
if segment_result.outputs is None: | ||
subject_data.failed = True | ||
return subject_data | ||
|
||
# collect output | ||
subject_data.parameter_file = segment_result.outputs.transformation_mat[0] | ||
subject_data.deformation_file = segment_result.outputs.forward_deformation_field | ||
subject_data.nipype_results['segment'] = segment_result | ||
|
||
subject_data.gm = segment_result.outputs.native_class_images[0][0] | ||
subject_data.wm = segment_result.outputs.native_class_images[1][0] | ||
subject_data.csf = segment_result.outputs.native_class_images[2][0] | ||
if normalize: | ||
subject_data.mwgm = segment_result.outputs.modulated_class_images[0][0] | ||
subject_data.mwwm = segment_result.outputs.modulated_class_images[1][0] | ||
subject_data.mwcsf = segment_result.outputs.modulated_class_images[2][0] | ||
|
||
# commit output files | ||
if hardlink_output: | ||
subject_data.hardlink_output_files() | ||
|
||
# generate segmentation thumbs | ||
if report: | ||
subject_data.generate_segmentation_thumbnails() | ||
|
||
return subject_data.sanitize() | ||
|
||
|
||
def _do_subject_normalize(subject_data, fwhm=0., anat_fwhm=0., caching=True, | ||
spm_dir=None, matlab_exec=None, spm_mcr=None, | ||
func_write_voxel_sizes=[3, 3, 3], | ||
|
@@ -730,12 +868,23 @@ def _do_subject_normalize(subject_data, fwhm=0., anat_fwhm=0., caching=True, | |
# sanitize subject_data (do things like .nii.gz -> .nii conversion, etc.) | ||
subject_data.sanitize(niigz2nii=(software == "spm")) | ||
|
||
# XXX get spm version | ||
spm_version = _get_version_spm(SPM_DIR) | ||
|
||
# prepare for smart caching | ||
if caching: | ||
cache_dir = os.path.join(subject_data.scratch, 'cache_dir') | ||
if not os.path.exists(cache_dir): os.makedirs(cache_dir) | ||
normalize = NipypeMemory(base_dir=cache_dir).cache(spm.Normalize) | ||
else: normalize = spm.Normalize().run | ||
if spm_version == 'spm8': | ||
normalize = NipypeMemory(base_dir=cache_dir).cache(spm.Normalize) | ||
elif spm_version == 'spm12': | ||
normalize = NipypeMemory(base_dir=cache_dir).cache(spm.Normalize12) | ||
else: | ||
# XXX normalize or normalize12 | ||
if spm_version == 'spm8': | ||
normalize = spm.Normalize().run | ||
elif spm_version == 'spm12': | ||
normalize = spm.Normalize12().run | ||
|
||
segmented = 'segment' in subject_data.nipype_results | ||
|
||
|
@@ -751,6 +900,8 @@ def _do_subject_normalize(subject_data, fwhm=0., anat_fwhm=0., caching=True, | |
else: | ||
parameter_file = subject_data.nipype_results[ | ||
'segment'].outputs.transformation_mat | ||
deformation_file = subject_data.nipype_results[ | ||
'segment'].outputs.forward_deformation_field | ||
|
||
subject_data.parameter_file = parameter_file | ||
|
||
|
@@ -770,14 +921,23 @@ def _do_subject_normalize(subject_data, fwhm=0., anat_fwhm=0., caching=True, | |
write_voxel_sizes = get_vox_dims(apply_to_files) | ||
else: write_voxel_sizes = anat_write_voxel_sizes | ||
apply_to_files = subject_data.anat | ||
|
||
# run node | ||
# XXX replace by normalize12 | ||
print('[DEFORMATION FILE]', deformation_file) | ||
print('[APPLY TO FILE]', apply_to_files) | ||
normalize_result = normalize( | ||
parameter_file=parameter_file, | ||
deformation_file=deformation_file, | ||
apply_to_files=apply_to_files, | ||
write_voxel_sizes=list(write_voxel_sizes), | ||
# write_bounding_box=[[-78, -112, -50], [78, 76, 85]], | ||
write_interp=1, jobtype='write', ignore_exception=True) | ||
write_interp=1, jobtype='write', ignore_exception=False) | ||
print('[RESULTS]', normalize_result.outputs) | ||
|
||
# run node | ||
# normalize_result = normalize( | ||
# parameter_file=parameter_file, | ||
# apply_to_files=apply_to_files, | ||
# write_voxel_sizes=list(write_voxel_sizes), | ||
# # write_bounding_box=[[-78, -112, -50], [78, 76, 85]], | ||
# write_interp=1, jobtype='write', ignore_exception=False) | ||
|
||
# failed node ? | ||
if normalize_result.outputs is None: | ||
|
@@ -1110,6 +1270,7 @@ def do_subject_preproc( | |
coreg_anat_to_func=False, | ||
coregister_software="spm", | ||
segment=True, | ||
newsegment=True, | ||
normalize=True, | ||
dartel=False, | ||
fwhm=0., | ||
|
@@ -1325,9 +1486,15 @@ def do_subject_preproc( | |
# segmentation of anatomical image | ||
##################################### | ||
if segment: | ||
subject_data = _do_subject_segment( | ||
subject_data, caching=caching, normalize=normalize, report=report, | ||
hardlink_output=hardlink_output) | ||
# XXX newsegment goes here | ||
if newsegment: | ||
subject_data = _do_subject_newsegment( | ||
subject_data, caching=caching, normalize=normalize, | ||
report=report, hardlink_output=hardlink_output) | ||
else: | ||
subject_data = _do_subject_segment( | ||
subject_data, caching=caching, normalize=normalize, | ||
report=report, hardlink_output=hardlink_output) | ||
|
||
# handle failed node | ||
if subject_data.failed: | ||
|
@@ -1379,12 +1546,12 @@ def do_subject_preproc( | |
return subject_data.sanitize() | ||
|
||
|
||
def _do_subjects_newsegment( | ||
def _do_subjects_dartel( | ||
subjects, output_dir, spm_dir=None, matlab_exec=None, | ||
spm_mcr=None, fwhm=0, anat_fwhm=0., n_jobs=-1, report=True, | ||
func_write_voxel_sizes=None, anat_write_voxel_sizes=None, | ||
output_modulated_tpms=False, parent_results_gallery=None, | ||
do_dartel=True, **kwargs): | ||
**kwargs): | ||
""" | ||
Runs NewSegment + optionally Dartel and DartelNorm2MNI, on given subjects. | ||
|
||
|
@@ -1401,6 +1568,8 @@ def _do_subjects_newsegment( | |
os.makedirs(cache_dir) | ||
mem = NipypeMemory(base_dir=cache_dir) | ||
|
||
# XXX put this in do_subject_newsegment | ||
""" | ||
# create node | ||
newsegment = mem.cache(spm.NewSegment) | ||
|
||
|
@@ -1425,18 +1594,39 @@ def _do_subjects_newsegment( | |
sd.generate_segmentation_thumbnails() | ||
if not do_dartel: | ||
return subjects | ||
""" | ||
# TODO check if newsegment was done properly | ||
# TODO build newsegment_result properly | ||
# for sd in subjects: | ||
# print(sd.nipype_results['segment'].outputs.dartel_input_images) | ||
# dartel_inputs = [ | ||
# sd.nipype_results['segment'].outputs.dartel_input_images | ||
# for sd in subjects] | ||
|
||
dartel_input_images = [] | ||
for i in range(6): | ||
tpm_subjects = [] | ||
for sd in subjects: | ||
tpms = sd.nipype_results['segment'].outputs.dartel_input_images[i] | ||
if tpms: | ||
tpm_subjects.extend(tpms) | ||
if tpm_subjects: | ||
dartel_input_images.append(tpm_subjects) | ||
|
||
print(dartel_input_images) | ||
|
||
# compute DARTEL template for group data | ||
dartel = mem.cache(spm.DARTEL) | ||
dartel_input_images = [ | ||
tpms for tpms in newsegment_result.outputs.dartel_input_images if tpms] | ||
# dartel_input_images = [ | ||
# tpms for tpms in newsegment_result.outputs.dartel_input_images if tpms] | ||
# dartel_input_images = [tpms for tpms in dartel_inputs if tpms] | ||
dartel_result = dartel(image_files=dartel_input_images) | ||
if dartel_result.outputs is None: | ||
return | ||
|
||
for j, subject_data in enumerate(subjects): | ||
subject_data.gm = newsegment_result.outputs.dartel_input_images[0][j] | ||
subject_data.wm = newsegment_result.outputs.dartel_input_images[1][j] | ||
# subject_data.gm = newsegment_result.outputs.dartel_input_images[0][j] | ||
# subject_data.wm = newsegment_result.outputs.dartel_input_images[1][j] | ||
subject_data.dartel_flow_fields = dartel_result.outputs\ | ||
.dartel_flow_fields[j] | ||
|
||
|
@@ -1571,8 +1761,9 @@ def do_subjects_preproc(subject_factory, session_ids=None, **preproc_params): | |
|
||
# DARTEL or NewSegment on 1 subject is senseless | ||
if len(subjects) < 2: | ||
if newsegment: | ||
warnings.warn("There is only one subject. Disabling NewSegment.") | ||
# TODO remove this | ||
# if newsegment: | ||
# warnings.warn("There is only one subject. Disabling NewSegment.") | ||
if dartel: | ||
warnings.warn("There is only one subject. Disabling DARTEL.") | ||
dartel = False | ||
|
@@ -1699,9 +1890,10 @@ def finalize_report(): | |
|
||
normalize = preproc_params.get("normalize", True) | ||
|
||
# XXX should we check this ? | ||
# don't yet segment nor normalize if dartel enabled | ||
if newsegment: | ||
for stage in ["segment", "normalize", "last_stage"]: | ||
if dartel: | ||
for stage in ["normalize", "last_stage"]: | ||
preproc_params[stage] = False | ||
|
||
# postpone smoothing | ||
|
@@ -1716,8 +1908,14 @@ def finalize_report(): | |
|
||
# run DARTEL | ||
preproc_params.update(backup_params) | ||
if newsegment: | ||
subjects = _do_subjects_newsegment( | ||
# XXX replace by do_subjects_dartel | ||
# if newsegment: | ||
# subjects = _do_subjects_newsegment( | ||
# subjects, scratch, n_jobs=n_jobs, do_dartel=dartel, | ||
# **preproc_params) | ||
|
||
if dartel: | ||
subjects = _do_subjects_dartel( | ||
subjects, scratch, n_jobs=n_jobs, do_dartel=dartel, | ||
**preproc_params) | ||
|
||
|
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
A short comment on these parameters would be welcome