Skip to content
This repository was archived by the owner on Jun 4, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 45 additions & 2 deletions src/transformers/models/opt/modeling_opt.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,46 @@ def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int
return super().forward(positions + self.offset)


class BMMLeftInput_QK(nn.Identity):
...


class BMMRightInput_QK(nn.Identity):
...


class BMMOutput_QK(nn.Identity):
...


class BMMLeftInput_PV(nn.Identity):
...


class BMMRightInput_PV(nn.Identity):
...


class BMMOutput_PV(nn.Identity):
...


class QuantizableBatchMatMul(nn.Module):
"""
Wrapper around torch.bmm with distinct inputs/output class
instances that could be quantized through SparseML recipe
"""

def __init__(self, left_input_cls, right_input_cls, output_cls):
super().__init__()
self.left_input = left_input_cls()
self.right_input = right_input_cls()
self.output = output_cls()

def forward(self, a: torch.Tensor, b: torch.Tensor):
return self.output(torch.bmm(self.left_input(a), self.right_input(b)))


class OPTAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""

Expand Down Expand Up @@ -150,6 +190,9 @@ def __init__(
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

self.attn_weights_bmm = QuantizableBatchMatMul(BMMLeftInput_QK, BMMRightInput_QK, BMMOutput_QK)
self.attn_output_bmm = QuantizableBatchMatMul(BMMLeftInput_PV, BMMRightInput_PV, BMMOutput_PV)

def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

Expand Down Expand Up @@ -208,7 +251,7 @@ def forward(
value_states = value_states.view(*proj_shape)

src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
attn_weights = self.attn_weights_bmm(query_states, key_states.transpose(1, 2))

if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
Expand Down Expand Up @@ -254,7 +297,7 @@ def forward(

attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

attn_output = torch.bmm(attn_probs, value_states)
attn_output = self.attn_output_bmm(attn_probs, value_states)

if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
Expand Down