@@ -71,7 +71,7 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred
7171 threshold = 0.5 , probabilityCol = "probability" ):
7272 """
7373 __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
74- maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
74+ maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \
7575 threshold=0.5, probabilityCol="probability")
7676 """
7777 super (LogisticRegression , self ).__init__ ()
@@ -96,8 +96,8 @@ def setParams(self, featuresCol="features", labelCol="label", predictionCol="pre
9696 maxIter = 100 , regParam = 0.1 , elasticNetParam = 0.0 , tol = 1e-6 , fitIntercept = True ,
9797 threshold = 0.5 , probabilityCol = "probability" ):
9898 """
99- setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
100- maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
99+ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
100+ maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \
101101 threshold=0.5, probabilityCol="probability")
102102 Sets params for logistic regression.
103103 """
@@ -220,7 +220,7 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred
220220 maxMemoryInMB = 256 , cacheNodeIds = False , checkpointInterval = 10 , impurity = "gini" ):
221221 """
222222 __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
223- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
223+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
224224 maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini")
225225 """
226226 super (DecisionTreeClassifier , self ).__init__ ()
@@ -242,9 +242,8 @@ def setParams(self, featuresCol="features", labelCol="label", predictionCol="pre
242242 impurity = "gini" ):
243243 """
244244 setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
245- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
246- maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
247- impurity="gini")
245+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
246+ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini")
248247 Sets params for the DecisionTreeClassifier.
249248 """
250249 kwargs = self .setParams ._input_kwargs
@@ -320,9 +319,9 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred
320319 maxMemoryInMB = 256 , cacheNodeIds = False , checkpointInterval = 10 , impurity = "gini" ,
321320 numTrees = 20 , featureSubsetStrategy = "auto" , seed = 42 ):
322321 """
323- __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
324- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
325- maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini",
322+ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
323+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
324+ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini", \
326325 numTrees=20, featureSubsetStrategy="auto", seed=42)
327326 """
328327 super (RandomForestClassifier , self ).__init__ ()
@@ -355,9 +354,9 @@ def setParams(self, featuresCol="features", labelCol="label", predictionCol="pre
355354 maxMemoryInMB = 256 , cacheNodeIds = False , checkpointInterval = 10 , seed = 42 ,
356355 impurity = "gini" , numTrees = 20 , featureSubsetStrategy = "auto" ):
357356 """
358- setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
359- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
360- maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=42,
357+ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
358+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
359+ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=42, \
361360 impurity="gini", numTrees=20, featureSubsetStrategy="auto")
362361 Sets params for linear classification.
363362 """
@@ -471,10 +470,10 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred
471470 maxMemoryInMB = 256 , cacheNodeIds = False , checkpointInterval = 10 , lossType = "logistic" ,
472471 maxIter = 20 , stepSize = 0.1 ):
473472 """
474- __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
475- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
476- maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, lossType="logistic",
477- maxIter=20, stepSize=0.1)
473+ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
474+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
475+ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \
476+ lossType="logistic", maxIter=20, stepSize=0.1)
478477 """
479478 super (GBTClassifier , self ).__init__ ()
480479 #: param for Loss function which GBT tries to minimize (case-insensitive).
@@ -502,9 +501,9 @@ def setParams(self, featuresCol="features", labelCol="label", predictionCol="pre
502501 maxMemoryInMB = 256 , cacheNodeIds = False , checkpointInterval = 10 ,
503502 lossType = "logistic" , maxIter = 20 , stepSize = 0.1 ):
504503 """
505- setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
506- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
507- maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
504+ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
505+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
506+ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \
508507 lossType="logistic", maxIter=20, stepSize=0.1)
509508 Sets params for Gradient Boosted Tree Classification.
510509 """
0 commit comments