@@ -67,7 +67,7 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred
6767 threshold = 0.5 , probabilityCol = "probability" ):
6868 """
6969 __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
70- maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
70+ maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \
7171 threshold=0.5, probabilityCol="probability")
7272 """
7373 super (LogisticRegression , self ).__init__ ()
@@ -92,8 +92,8 @@ def setParams(self, featuresCol="features", labelCol="label", predictionCol="pre
9292 maxIter = 100 , regParam = 0.1 , elasticNetParam = 0.0 , tol = 1e-6 , fitIntercept = True ,
9393 threshold = 0.5 , probabilityCol = "probability" ):
9494 """
95- setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
96- maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
95+ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
96+ maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \
9797 threshold=0.5, probabilityCol="probability")
9898 Sets params for logistic regression.
9999 """
@@ -202,7 +202,7 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred
202202 maxMemoryInMB = 256 , cacheNodeIds = False , checkpointInterval = 10 , impurity = "gini" ):
203203 """
204204 __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
205- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
205+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
206206 maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini")
207207 """
208208 super (DecisionTreeClassifier , self ).__init__ ()
@@ -224,9 +224,8 @@ def setParams(self, featuresCol="features", labelCol="label", predictionCol="pre
224224 impurity = "gini" ):
225225 """
226226 setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
227- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
228- maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
229- impurity="gini")
227+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
228+ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini")
230229 Sets params for the DecisionTreeClassifier.
231230 """
232231 kwargs = self .setParams ._input_kwargs
@@ -302,9 +301,9 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred
302301 maxMemoryInMB = 256 , cacheNodeIds = False , checkpointInterval = 10 , impurity = "gini" ,
303302 numTrees = 20 , featureSubsetStrategy = "auto" , seed = 42 ):
304303 """
305- __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
306- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
307- maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini",
304+ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
305+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
306+ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini", \
308307 numTrees=20, featureSubsetStrategy="auto", seed=42)
309308 """
310309 super (RandomForestClassifier , self ).__init__ ()
@@ -337,9 +336,9 @@ def setParams(self, featuresCol="features", labelCol="label", predictionCol="pre
337336 maxMemoryInMB = 256 , cacheNodeIds = False , checkpointInterval = 10 , seed = 42 ,
338337 impurity = "gini" , numTrees = 20 , featureSubsetStrategy = "auto" ):
339338 """
340- setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
341- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
342- maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=42,
339+ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
340+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
341+ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=42, \
343342 impurity="gini", numTrees=20, featureSubsetStrategy="auto")
344343 Sets params for linear classification.
345344 """
@@ -453,10 +452,10 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred
453452 maxMemoryInMB = 256 , cacheNodeIds = False , checkpointInterval = 10 , lossType = "logistic" ,
454453 maxIter = 20 , stepSize = 0.1 ):
455454 """
456- __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
457- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
458- maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, lossType="logistic",
459- maxIter=20, stepSize=0.1)
455+ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
456+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
457+ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \
458+ lossType="logistic", maxIter=20, stepSize=0.1)
460459 """
461460 super (GBTClassifier , self ).__init__ ()
462461 #: param for Loss function which GBT tries to minimize (case-insensitive).
@@ -484,9 +483,9 @@ def setParams(self, featuresCol="features", labelCol="label", predictionCol="pre
484483 maxMemoryInMB = 256 , cacheNodeIds = False , checkpointInterval = 10 ,
485484 lossType = "logistic" , maxIter = 20 , stepSize = 0.1 ):
486485 """
487- setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
488- maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
489- maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
486+ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
487+ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
488+ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \
490489 lossType="logistic", maxIter=20, stepSize=0.1)
491490 Sets params for Gradient Boosted Tree Classification.
492491 """
0 commit comments