An R package for fitting Bayesian mixed membership models for functional data and multivariate data. Mixed membership models, also sometimes reffered to as partial membership models, can be thought of as a generalization of traditional clustering models, where each observation can partially belong to multiple clusters or features.
We will let
In the above formula, the color
where the error-free covariance
- MCMC_iters := Number of MCMC iterations
- K := Number of features (or clusters)
- P := Number of basis functions
- n_funct := Number of functions
- M := Number of pseudo-eigenfunctions
- D := Number of covariates
Parameter | Size | Description |
---|---|---|
(K, P, MCMC_iters) | Parameters controlling the mean function for each covariate | |
(MCMC_iters, K) | Paramaters used in the prior on |
|
[MCMC_iters] (P, D, K) | Parameters controlling the covariate dependence of the mean functions | |
(K, D, MCMC_iters) | Paramaters used in the prior on |
|
(n_funct, M, MCMC_iters) | Parameters controling the amount of variation from the mean in the directions of the pseudo eigenfunctions | |
(n_funct, K, MCMC_iters) | Parameters indicating an observation's proportion of membership to each cluster | |
(K, MCMC_iters) | Paramaters used in the prior on the |
|
(MCMC_iters) | Paramater used in the prior on the |
|
(MCMC_iters) | Parameter controlling the variance | |
[MCMC_iters] (K, P, M) | Parameters constructing the pseudo eigenfunctions | |
[MCMC_iters] (K, P, M) | Parameters used in the prior on the |
|
(K, M, MCMC_iters) | Parameters used in the prior on the |
|
(K, 2, MCMC_iters) | Parameters used in the prior on |
|
[MCMC_iters, K] (P, D, M) | Parameters controlling the covariate dependence of the pseudo-eigenfunctions | |
[MCMC_iters, K] (P, D, M) | Parameters used in the prior on the |
|
[MCMC_iters] (K, M, D) | Parameters used in the prior on the |
|
[MCMC_iters] (K, 2, D) | Parameters used in the prior on the |
Let
In the above formula, the color
where the error-free covariance
- MCMC_iters := Number of MCMC iterations
- K := Number of features (or clusters)
- P := Dimension of multivariate Data
- N := Number of observations
- M := Number of pseudo-eigenfunctions
- D := Number of covariates
Parameter | Size | Description |
---|---|---|
(K, P, MCMC_iters) | Parameters controlling the mean function for each covariate | |
(MCMC_iters, K) | Paramaters used in the prior on |
|
[MCMC_iters] (P, D, K) | Parameters controlling the covariate dependence of the mean functions | |
(K, D, MCMC_iters) | Paramaters used in the prior on |
|
(N, M, MCMC_iters) | Parameters controling the amount of variation from the mean in the directions of the pseudo eigenfunctions | |
(N, K, MCMC_iters) | Parameters indicating an observation's proportion of membership to each cluster | |
(K, MCMC_iters) | Paramaters used in the prior on the |
|
(MCMC_iters) | Paramater used in the prior on the |
|
(MCMC_iters) | Parameter controlling the variance | |
[MCMC_iters] (K, P, M) | Parameters constructing the pseudo eigenfunctions | |
[MCMC_iters] (K, P, M) | Parameters used in the prior on the |
|
(K, M, MCMC_iters) | Parameters used in the prior on the |
|
(K, 2, MCMC_iters) | Parameters used in the prior on |
|
[MCMC_iters, K] (P, D, M) | Parameters controlling the covariate dependence of the pseudo-eigenfunctions | |
[MCMC_iters, K] (P, D, M) | Parameters used in the prior on the |
|
[MCMC_iters] (K, M, D) | Parameters used in the prior on the |
|
[MCMC_iters] (K, 2, D) | Parameters used in the prior on the |