Skip to content

naatebarber/manifold

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 

Repository files navigation

Manifold

Weight separated machine learning framework.

Network types:

  • manifold::nn::fc::Manifold Fully connected feedforward network.

Trainer types:

  • manifold::optimizers::MiniBatchGradientDescent MBGD trainer with learning rate, decay, early stopping and more.
  • manifold::neat::Neat Distributed async NEAT implementation (Neuro Evolution of Augmenting Topologies) using ZMQ workers.

Layer types:

  • manifold::layers::Dense Dense (fully connected) layer.

Network types:

  • manifold::nn::DNN Adjustable size dense network

Substrate types:

  • manifold::Substrate Basic ringbuffer substrate using a Uniform distribution. No curvature.

TODO:

  • make hyperparameters trainable via neat as well as network breadth and depth
  • add self healing to neat async
  • Add multi-machine distributed NEAT.
  • Add curvature property to substrate, making it harder to reach edges.
  • Add CNN

About

Weight separated Rust ML framework

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published