Skip to content

Joint optimization of semantic segmentation and image reconstruction

License

Notifications You must be signed in to change notification settings

mpapadomanolaki/U-REC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

U-REC

Joint optimization of semantic segmentation and image reconstruction

UNet and UREC networks were used to produce the accuracy results of the paper 'Maria Papadomanolaki, Konstantinos Karantzalos, Maria Vakalopoulou. A MULTI-TASK DEEP LEARNING FRAMEWORK COUPLING SEMANTIC SEGMENTATION AND IMAGE RECONSTRUCTION FOR VERY HIGH RESOLUTION IMAGERY. IGARSS , Jul 2019, Yokohama, Japan' (https://hal.inria.fr/hal-02266085/document)

make_xys.py is used to create training and validation csv files with x and y coordinate locations of the images, in order to extract patches during the training process.

custom.py is the definition of the custom dataloader thet we used for the isprs dataset.

tools.py involves functions that are called in m ain.py during training.

infer.py is used for evaluating the model on the testing images.

If you find this code useful in your research, please consider citing:

Maria Papadomanolaki, Konstantinos Karantzalos, Maria Vakalopoulou. A MULTI-TASK DEEP LEARNING FRAMEWORK COUPLING SEMANTIC SEGMENTATION AND IMAGE RECONSTRUCTION FOR VERY HIGH RESOLUTION IMAGERY

About

Joint optimization of semantic segmentation and image reconstruction

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages