-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'upstream/dev' into dev
- Loading branch information
Showing
16 changed files
with
243 additions
and
71 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,15 +1,20 @@ | ||
numpy>=1.16.0 | ||
torch>=1.5 | ||
librosa>=0.5.1 | ||
Unidecode>=0.4.20 | ||
tensorboard | ||
tensorflow>=2.2 | ||
numpy>=1.16.0 | ||
scipy>=0.19.0 | ||
numba==0.48 | ||
librosa==0.7.2 | ||
phonemizer>=2.2.0 | ||
unidecode==0.4.20 | ||
attrdict | ||
tensorboardX | ||
matplotlib | ||
Pillow | ||
flask | ||
scipy | ||
tqdm | ||
soundfile | ||
phonemizer | ||
bokeh==1.4.0 | ||
inflect | ||
bokeh==1.4.0 | ||
soundfile | ||
nose==1.3.7 | ||
cardboardlint==1.3.0 | ||
pylint==2.5.3 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,18 +1,19 @@ | ||
torch>=1.5 | ||
tensorflow==2.3rc | ||
numpy>=1.16.0 | ||
scipy>=0.19.0 | ||
numba==0.48 | ||
torch>=0.4.1 | ||
tensorflow>=2.2 | ||
librosa>=0.5.1 | ||
Unidecode>=0.4.20 | ||
tensorboard | ||
librosa==0.7.2 | ||
phonemizer>=2.2.0 | ||
unidecode==0.4.20 | ||
attrdict | ||
tensorboardX | ||
matplotlib | ||
Pillow | ||
flask | ||
scipy | ||
tqdm | ||
soundfile | ||
inflect | ||
phonemizer | ||
bokeh==1.4.0 | ||
nose | ||
soundfile | ||
nose==1.3.7 | ||
cardboardlint==1.3.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
|
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
import os | ||
import torch | ||
import unittest | ||
import numpy as np | ||
import tensorflow as tf | ||
tf.get_logger().setLevel('INFO') | ||
|
||
from TTS.utils.io import load_config | ||
from TTS.tf.models.tacotron2 import Tacotron2 | ||
from TTS.tf.utils.tflite import convert_tacotron2_to_tflite, load_tflite_model | ||
|
||
#pylint: disable=unused-variable | ||
|
||
torch.manual_seed(1) | ||
use_cuda = torch.cuda.is_available() | ||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
|
||
file_path = os.path.dirname(os.path.realpath(__file__)).replace('/tf/', '/') | ||
c = load_config(os.path.join(file_path, 'test_config.json')) | ||
|
||
|
||
class TacotronTFTrainTest(unittest.TestCase): | ||
|
||
@staticmethod | ||
def generate_dummy_inputs(): | ||
chars_seq = torch.randint(0, 24, (8, 128)).long().to(device) | ||
chars_seq_lengths = torch.randint(100, 128, (8, )).long().to(device) | ||
chars_seq_lengths = torch.sort(chars_seq_lengths, descending=True)[0] | ||
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) | ||
mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) | ||
mel_lengths = torch.randint(20, 30, (8, )).long().to(device) | ||
stop_targets = torch.zeros(8, 30, 1).float().to(device) | ||
speaker_ids = torch.randint(0, 5, (8, )).long().to(device) | ||
|
||
chars_seq = tf.convert_to_tensor(chars_seq.cpu().numpy()) | ||
chars_seq_lengths = tf.convert_to_tensor(chars_seq_lengths.cpu().numpy()) | ||
mel_spec = tf.convert_to_tensor(mel_spec.cpu().numpy()) | ||
return chars_seq, chars_seq_lengths, mel_spec, mel_postnet_spec, mel_lengths,\ | ||
stop_targets, speaker_ids | ||
|
||
def test_train_step(self): | ||
''' test forward pass ''' | ||
chars_seq, chars_seq_lengths, mel_spec, mel_postnet_spec, mel_lengths,\ | ||
stop_targets, speaker_ids = self.generate_dummy_inputs() | ||
|
||
for idx in mel_lengths: | ||
stop_targets[:, int(idx.item()):, 0] = 1.0 | ||
|
||
stop_targets = stop_targets.view(chars_seq.shape[0], | ||
stop_targets.size(1) // c.r, -1) | ||
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | ||
|
||
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5) | ||
# training pass | ||
output = model(chars_seq, chars_seq_lengths, mel_spec, training=True) | ||
|
||
# check model output shapes | ||
assert np.all(output[0].shape == mel_spec.shape) | ||
assert np.all(output[1].shape == mel_spec.shape) | ||
assert output[2].shape[2] == chars_seq.shape[1] | ||
assert output[2].shape[1] == (mel_spec.shape[1] // model.decoder.r) | ||
assert output[3].shape[1] == (mel_spec.shape[1] // model.decoder.r) | ||
|
||
# inference pass | ||
output = model(chars_seq, training=False) | ||
|
||
def test_forward_attention(self,): | ||
chars_seq, chars_seq_lengths, mel_spec, mel_postnet_spec, mel_lengths,\ | ||
stop_targets, speaker_ids = self.generate_dummy_inputs() | ||
|
||
for idx in mel_lengths: | ||
stop_targets[:, int(idx.item()):, 0] = 1.0 | ||
|
||
stop_targets = stop_targets.view(chars_seq.shape[0], | ||
stop_targets.size(1) // c.r, -1) | ||
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | ||
|
||
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, forward_attn=True) | ||
# training pass | ||
output = model(chars_seq, chars_seq_lengths, mel_spec, training=True) | ||
|
||
# check model output shapes | ||
assert np.all(output[0].shape == mel_spec.shape) | ||
assert np.all(output[1].shape == mel_spec.shape) | ||
assert output[2].shape[2] == chars_seq.shape[1] | ||
assert output[2].shape[1] == (mel_spec.shape[1] // model.decoder.r) | ||
assert output[3].shape[1] == (mel_spec.shape[1] // model.decoder.r) | ||
|
||
# inference pass | ||
output = model(chars_seq, training=False) | ||
|
||
def test_tflite_conversion(self, ): #pylint:disable=no-self-use | ||
model = Tacotron2(num_chars=24, | ||
num_speakers=0, | ||
r=3, | ||
postnet_output_dim=80, | ||
decoder_output_dim=80, | ||
attn_type='original', | ||
attn_win=False, | ||
attn_norm='sigmoid', | ||
prenet_type='original', | ||
prenet_dropout=True, | ||
forward_attn=False, | ||
trans_agent=False, | ||
forward_attn_mask=False, | ||
location_attn=True, | ||
attn_K=0, | ||
separate_stopnet=True, | ||
bidirectional_decoder=False, | ||
enable_tflite=True) | ||
model.build_inference() | ||
convert_tacotron2_to_tflite(model, output_path='test_tacotron2.tflite', experimental_converter=True) | ||
# init tflite model | ||
tflite_model = load_tflite_model('test_tacotron2.tflite') | ||
# fake input | ||
inputs = tf.random.uniform([1, 4], maxval=10, dtype=tf.int32) #pylint:disable=unexpected-keyword-arg | ||
# run inference | ||
# get input and output details | ||
input_details = tflite_model.get_input_details() | ||
output_details = tflite_model.get_output_details() | ||
# reshape input tensor for the new input shape | ||
tflite_model.resize_tensor_input(input_details[0]['index'], inputs.shape) #pylint:disable=unexpected-keyword-arg | ||
tflite_model.allocate_tensors() | ||
detail = input_details[0] | ||
input_shape = detail['shape'] | ||
tflite_model.set_tensor(detail['index'], inputs) | ||
# run the tflite_model | ||
tflite_model.invoke() | ||
# collect outputs | ||
decoder_output = tflite_model.get_tensor(output_details[0]['index']) | ||
postnet_output = tflite_model.get_tensor(output_details[1]['index']) | ||
# remove tflite binary | ||
os.remove('test_tacotron2.tflite') | ||
|
Oops, something went wrong.