Skip to content

moria97/fastpdf4llm

Repository files navigation

🚀 fastpdf4llm: PDF to LLM-Ready Markdown in Seconds

CI

A fast and efficient PDF to Markdown converter optimized for LLM (Large Language Model) processing. This tool intelligently extracts text, tables, and images from PDF files and converts them into well-structured Markdown format.

Features

  • 🚀 Fast Processing: Efficient PDF parsing and conversion
  • 📊 Table Extraction: Automatically detects and converts tables to Markdown format
  • 🖼️ Image Support: Extracts and saves images from PDFs (can be disabled for text-only processing)
  • 📝 Smart Formatting: Intelligently identifies headings based on font sizes
  • 📈 Progress Tracking: Built-in progress callback support
  • 🎯 LLM Optimized: Output format optimized for LLM consumption
  • 📜 Free & Open Source: MIT licensed, free to use for commercial and personal projects

Examples

See the examples/ directory for more usage examples:

Installation

Using Poetry (Recommended)

poetry add fastpdf4llm

Using pip

pip install fastpdf4llm

Quick Start

Basic Usage

from fastpdf4llm import to_markdown

# Convert PDF to Markdown
markdown_content = to_markdown("path/to/your/document.pdf")

# Save to file
with open("output.md", "w", encoding="utf-8") as f:
    f.write(markdown_content)

With Different Input Types

The to_markdown function accepts multiple input types:

from fastpdf4llm import to_markdown
from pathlib import Path
from io import BytesIO

# String path (traditional)
markdown_content = to_markdown("path/to/document.pdf")

# Pathlib Path object
markdown_content = to_markdown(Path("path/to/document.pdf"))

# File object
with open("path/to/document.pdf", "rb") as f:
    markdown_content = to_markdown(f)

# BytesIO (in-memory PDF)
with open("path/to/document.pdf", "rb") as f:
    pdf_bytes = f.read()

bytes_io = BytesIO(pdf_bytes)
markdown_content = to_markdown(bytes_io)

With Custom Image Directory

from fastpdf4llm import to_markdown

# Specify custom directory for extracted images
markdown_content = to_markdown(
    "path/to/your/document.pdf",
    image_dir="./images"
)

With Progress Callback

from fastpdf4llm import to_markdown, ProgressInfo

def progress_callback(progress: ProgressInfo):
    print(f"{progress.phase.value}: {progress.current_page}/{progress.total_pages} "
          f"({progress.percentage:.1f}%) - {progress.message}")

markdown_content = to_markdown(
    "path/to/your/document.pdf",
    progress_callback=progress_callback
)

With Custom Parse Options

from fastpdf4llm import to_markdown
from fastpdf4llm.models.parse_options import ParseOptions

# Customize parsing options for better text extraction
parse_options = ParseOptions(
    x_tolerance_ratio=0.15,  # Ratio of x_tolerance to page width (default: 0.15)
    y_tolerance=3            # Control spacing between lines (default: 3)
)

markdown_content = to_markdown(
    "path/to/your/document.pdf",
    parse_options=parse_options
)

No Image Mode

from fastpdf4llm import to_markdown

# Disable image extraction for faster processing
# Useful when you only need text content
markdown_content = to_markdown(
    "path/to/your/document.pdf",
    extract_images=False
)

Combined Usage

from fastpdf4llm import to_markdown, ProgressInfo
from fastpdf4llm.models.parse_options import ParseOptions

def progress_callback(progress: ProgressInfo):
    print(f"Progress: {progress.percentage:.1f}%")

parse_options = ParseOptions(x_tolerance_ratio=0.25, y_tolerance=5)

markdown_content = to_markdown(
    "path/to/your/document.pdf",
    image_dir="./images",
    extract_images=True,
    parse_options=parse_options,
    progress_callback=progress_callback
)

API Reference

to_markdown

Convert a PDF file to Markdown format.

Parameters:

  • path_or_fp (Union[str, pathlib.Path, BufferedReader, BytesIO]): PDF file path, Path object, file handle, or BytesIO object
  • image_dir (Optional[str]): Directory to save extracted images. Defaults to ./tmp/images/. Only used when extract_images=True
  • extract_images (bool): Whether to extract and save images from PDF. Default: True
    • Set to False to skip image extraction for faster processing
    • When False, images are ignored and not included in the markdown output
  • parse_options (Optional[ParseOptions]): Parsing options to control text extraction. Defaults to ParseOptions(x_tolerance_ratio=0.15, y_tolerance=3)
  • progress_callback (Optional[Callable[[ProgressInfo], None]]): Callback function for progress updates

Returns:

  • str: Markdown content of the PDF

Example:

from fastpdf4llm import to_markdown, ProgressInfo
from typing import Callable

def on_progress(progress: ProgressInfo):
    print(f"Progress: {progress.percentage:.1f}%")

content = to_markdown(
    "document.pdf",
    image_dir="./output_images",
    extract_images=True,
    progress_callback=on_progress
)

# No image mode example
content_text_only = to_markdown(
    "document.pdf",
    extract_images=False
)

ParseOptions

Parsing options to customize PDF text extraction behavior.

Attributes:

  • x_tolerance_ratio (float): Ratio of x_tolerance to page width for controlling spacing tolerance between words horizontally. Default: 0.15
    • Lower values (e.g., 0.1): More strict word separation (better for well-formatted PDFs)
    • Higher values (e.g., 0.25): More lenient word grouping (better for PDFs with irregular spacing)
  • y_tolerance (float): Controls spacing tolerance between lines vertically. Default: 3
    • Lower values: More strict line separation
    • Higher values: More lenient line grouping

Example:

from fastpdf4llm.models.parse_options import ParseOptions

# For PDFs with tight spacing
tight_options = ParseOptions(x_tolerance_ratio=0.1, y_tolerance=1)

# For PDFs with loose spacing
loose_options = ParseOptions(x_tolerance_ratio=0.25, y_tolerance=5)

markdown_content = to_markdown("document.pdf", parse_options=tight_options)

ProgressInfo

Progress information model for tracking conversion progress.

Attributes:

  • phase (ProcessPhase): Current processing phase (ANALYSIS or CONVERSION)
  • current_page (int): Current page being processed
  • total_pages (int): Total number of pages in the PDF
  • percentage (float): Overall progress percentage (0-100)
  • message (str): Status message

How It Works

  1. Analysis Phase: Analyzes the PDF to identify font sizes and determine heading hierarchy
  2. Conversion Phase: Extracts text, tables, and images, converting them to Markdown format
  3. Smart Formatting: Automatically detects headings based on font size analysis
  4. Table Detection: Identifies and converts tables to Markdown table format
  5. Image Extraction: Extracts images and saves them to the specified directory
  6. Configurable Parsing: Adjustable tolerance settings for optimal text extraction from various PDF layouts

Requirements

  • Python >= 3.9
  • pdfplumber >= 0.11.3
  • loguru >= 0.7.0
  • pydantic >= 2.0.0

Development

Setup

# Clone the repository
git clone https://github.com/moria97/fastpdf4llm.git
cd fastpdf4llm

# Install dependencies
poetry install

# Install pre-commit hooks (runs automatically on git commit)
poetry run pre-commit install

Running Tests

poetry run pytest

Code Formatting

# Format code
poetry run ruff format .

# Lint code
poetry run ruff check .

Acknowledgements

This project is inspired by the pdf2markdown4llm project by HawkClaws. We appreciate their work on PDF to Markdown conversion for LLM applications.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Repository

https://github.com/moria97/fastpdf4llm

About

Lightweight and fast library to convert PDF to markdown format.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published