Skip to content

This repository contains the supplementary material for the manuscript entitled "What Information Contributes to Log-based Anomaly Detection? Insights from a Configurable Transformer-Based Approach".

License

Notifications You must be signed in to change notification settings

mooselab/suppmaterial-CfgTransAnomalyDetector

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Supplementary Material for "What Information Contributes to Log-based Anomaly Detection? Insights from a Configurable Transformer-Based Approach"

This repository contains the supplementary material for the manuscript entitled "What Information Contributes to Log-based Anomaly Detection? Insights from a Configurable Transformer-Based Approach". The material provided is intended to support the findings and methodologies discussed in the paper.

Repository Structure

The repository is organized as follows:

src Folder

  • utils: Utility functions and helper scripts
    • dataset.py: Dataset classes for different log formats
    • tokenizer.py: Log sequence tokenization utilities
    • seq_encoder.py: Implementations of positional and temporal encoding methods
    • earlystopping.py: Early stopping implementation for training
    • config.py: Configuration utilities
  • anomaly_model.py: Defines the main anomaly detection model architecture
  • anomaly_bilstm.py: Implementation of BiLSTM-based anomaly detection
  • anomaly_neurallog.py: Implementation of NeuralLog architecture
  • model.py: Contains the base transformer model definitions
  • train_anomaly_binary.py: Training script for binary anomaly detection
  • train_neurallog.py: Training script for NeuralLog model
  • paths.yaml: Configuration file for different environment paths

Usage

To use the supplementary material, follow these steps:

  1. Clone the repository:

    git clone https://github.com/mooselab/suppmaterial-CfgTransAnomalyDetector.git 
    cd ./suppmaterial-CfgTransAnomalyDetector
  2. Install the required dependencies:

    pip install -r requirements.txt
  3. Configure paths:

    • Update paths.yaml with appropriate paths for your environment
    • Set up dataset paths according to the specified structure
  4. Training models:

    • For transformer-based anomaly detection:
      python train_anomaly_binary.py --dataset BGL --env local --seq_enc_method temporal --d_model 64 --embed_method sentence
    • For NeuralLog-based detection:
      python train_neurallog.py --dataset BGL --env local

    Available arguments:

    • --dataset: Dataset to use (default: 'BGL')
    • --env: Environment configuration ('local' or 'cluster')
    • --seq_enc_method: Sequence encoding method ('temporal', 'positional', 'time2vec', 'None', 'temporal_only', 'time2vec_only')
    • --d_model: Model dimension (default: 64)
    • --embed_method: Log embedding method ('sentence', 'random', 'onehot')

License

This repository is licensed under the MIT License. See the LICENSE file for more details.

Reference

To be available after the review process.

About

This repository contains the supplementary material for the manuscript entitled "What Information Contributes to Log-based Anomaly Detection? Insights from a Configurable Transformer-Based Approach".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages