Skip to content

mohomran/neural_body_fitting

Repository files navigation

Neural Body Fitting code repository

example_output

Setup:

  • git clone --recursive https://github.com/mohomran/neural_body_fitting
  • create and activate a fresh virtualenv
  • pip install tensorflow-gpu==1.6.0 (or tensorflow==1.6.0)
  • inside the root folder run pip install -r requirements.txt
  • navigate to external/up and run python setup.py develop (which will install the UP toolbox)
  • download SMPL (at http://smpl.is.tue.mpg.de/downloads) and unzip to external/
  • download the segmentation model and extract into models/
  • download the fitting model and extract into experiments/states

Demo:

The following command will perform inference on 60 images from the UP dataset:

python run.py infer_segment_fit experiments/config/demo_up/ \
              --inp_fp demo/up/input/\
              --out_fp demo/up/output\
              --visualise render

The results can be viewed by opening the file demo/up/output/index.html in a browser. These were selected to demonstrate both success and failure cases. Most of the processing time (~80%) is taken up by the mesh renderer. Alternatively, you can use --visualise pose which is quicker and just plots the projected SMPL joints.

Training:

Coming Soon

Citation

If you find any parts of this code useful, please cite the following paper:

@inproceedings {omran2018nbf,
  title = {Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape Estimation},
  journal = {International Conference on 3D Vision (3DV)},
  year = {2018},
  author = {Omran, Mohamed and Lassner, Christoph and Pons-Moll, Gerard and Gehler, Peter V. and Schiele, Bernt}
  address = {Verona, Italy},
}

Acknowledgements

The repository is modelled after (and partially adopts code from) Christoph Lassner's Generating People project. The example data provided is from his Unite the People dataset.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages