Skip to content

modelscope/ms-enclave

Repository files navigation



中文   |   English  

PyPI version PyPI - Downloads

Overview

ms-enclave is a modular and stable agent sandbox runtime environment that provides a secure isolated execution environment for applications. It achieves strong isolation through Docker containers, with accompanying local/HTTP managers and an extensible tool system, enabling you to safely and efficiently execute code in a controlled environment.

  • 🔒 Secure Isolation: Full isolation and resource limitation based on Docker
  • 🧩 Modular: Extensible sandbox and tools (registration factory)
  • ⚡ Stable Performance: Simple implementation, fast startup, lifecycle management
  • 🌐 Remote Management: Built-in FastAPI service, supports HTTP management
  • 🔧 Tool System: Standardized tools enabled by sandbox type (OpenAI-style schema)

System Requirements

  • Python >= 3.10
  • Operating System: Linux, macOS, or Windows with Docker support
  • Docker daemon running locally (Notebook sandbox requires port 8888 open)

Installation

Install from PyPI

pip install ms-enclave

Install from Source

git clone https://github.com/modelscope/ms-enclave.git
cd ms-enclave
pip install -e .

Quick Start: Minimal Example (SandboxFactory)

Tools need to be explicitly enabled in the tools_config setting, otherwise they won't be registered.

import asyncio
from ms_enclave.sandbox.boxes import SandboxFactory
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType

async def main():
    config = DockerSandboxConfig(
        image='python:3.11-slim',
        memory_limit='512m',
        tools_config={
            'python_executor': {},
            'file_operation': {},
            'shell_executor': {}
        }
    )

    async with SandboxFactory.create_sandbox(SandboxType.DOCKER, config) as sandbox:
        # 1) Write a file
        await sandbox.execute_tool('file_operation', {
            'operation': 'write', 'file_path': '/sandbox/hello.txt', 'content': 'hi from enclave'
        })
        # 2) Execute Python code
        result = await sandbox.execute_tool('python_executor', {
            'code': "print('Hello from sandbox!')\nprint(open('/sandbox/hello.txt').read())"
        })
        print(result.output)

asyncio.run(main())

Typical Usage Scenarios and Examples

  • Directly using SandboxFactory: Create/destroy sandboxes in a single process—lightweight; suitable for scripts or one-off tasks
  • Using LocalSandboxManager: Manage the lifecycle/cleanup of multiple sandboxes locally; suitable for service-oriented or multi-task parallel scenarios
  • Using HttpSandboxManager: Unified sandbox management through remote HTTP services; suitable for cross-machine/distributed or more isolated deployments

1) Direct Sandbox Creation: SandboxFactory (Lightweight, Temporary)

Usage Scenarios:

  • Temporarily execute code in scripts or microservices
  • Fine-grained control over sandbox lifecycle (cleanup upon context exit)

Example (Docker Sandbox + Python Execution):

import asyncio
from ms_enclave.sandbox.boxes import SandboxFactory
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType

async def main():
    cfg = DockerSandboxConfig(
        tools_config={'python_executor': {}}
    )
    async with SandboxFactory.create_sandbox(SandboxType.DOCKER, cfg) as sb:
        r = await sb.execute_tool('python_executor', {
            'code': 'import platform; print(platform.python_version())'
        })
        print(r.output)

asyncio.run(main())

2) Local Unified Management: LocalSandboxManager (Multi-Sandbox, Lifecycle Management)

Usage Scenarios:

  • Create/manage multiple sandboxes within the same process (creation, query, stop, periodic cleanup)
  • Unified view for monitoring stats and health

Example:

import asyncio
from ms_enclave.sandbox.manager import LocalSandboxManager
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType

async def main():
    async with LocalSandboxManager() as manager:
        cfg = DockerSandboxConfig(tools_config={'shell_executor': {}})
        sandbox_id = await manager.create_sandbox(SandboxType.DOCKER, cfg)

        # Execute command
        res = await manager.execute_tool(sandbox_id, 'shell_executor', {'command': 'echo hello'})
        print(res.output.strip())  # hello

        # View list
        infos = await manager.list_sandboxes()
        print([i.id for i in infos])

        # Stop and delete
        await manager.stop_sandbox(sandbox_id)
        await manager.delete_sandbox(sandbox_id)

asyncio.run(main())

3) Remote Unified Management: HttpSandboxManager (Cross-Machine/Isolated Deployment)

Usage Scenarios:

  • Run sandbox services on dedicated hosts/containers, invoke remotely via HTTP
  • Share a secure controlled sandbox cluster among multiple applications

Start the service (choose one):

# Option A: Command line
ms-enclave server --host 0.0.0.0 --port 8000

# Option B: Python script
python -c "from ms_enclave.sandbox import create_server; create_server().run(host='0.0.0.0', port=8000)"

Client Example:

import asyncio
from ms_enclave.sandbox.manager import HttpSandboxManager
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType

async def main():
    async with HttpSandboxManager(base_url='http://127.0.0.1:8000') as m:
        cfg = DockerSandboxConfig(tools_config={'python_executor': {}})
        sid = await m.create_sandbox(SandboxType.DOCKER, cfg)
        r = await m.execute_tool(sid, 'python_executor', {'code': 'print("Hello remote")'})
        print(r.output)
        await m.delete_sandbox(sid)

asyncio.run(main())

Sandbox Types and Tool Support

Currently Supported Sandbox Types:

  • DOCKER (General-purpose container execution)

    • Supported tools:
      • python_executor (execute Python code)
      • shell_executor (execute Shell commands)
      • file_operation (read/write/delete/list files)
    • Features: Configurable memory/CPU limits, volume mounts, network toggling, privileged mode, port mapping
  • DOCKER_NOTEBOOK (Jupyter Kernel Gateway environment)

    • Supported tools:
      • notebook_executor (execute code via Jupyter Kernel, supports context saving)
    • Note: This type only loads notebook_executor; other DOCKER-specific tools won't be enabled in this sandbox.
    • Dependencies: Requires port 8888 exposed and network enabled

Tool Loading Rules:

  • Tools are initialized and made available only when explicitly declared in tools_config.
  • Tools validate required_sandbox_type; unmatched types will be ignored automatically.

Example:

DockerSandboxConfig(tools_config={'python_executor': {}, 'shell_executor': {}, 'file_operation': {}})
DockerNotebookConfig(tools_config={'notebook_executor': {}})

Common Configuration Options

  • image: Docker image name (e.g., python:3.11-slim or jupyter-kernel-gateway)
  • memory_limit: Memory limit (e.g., 512m / 1g)
  • cpu_limit: CPU limit (float > 0)
  • volumes: Volume mounts, e.g., {host_path: {"bind": "/container/path", "mode": "rw"}}
  • ports: Port mappings, e.g., { "8888/tcp": ("127.0.0.1", 8888) }
  • network_enabled: Enable network (Notebook sandbox requires True)
  • remove_on_exit: Automatically remove container on exit (default True)

Example of Installing Additional Dependencies in Sandbox

async with SandboxFactory.create_sandbox(SandboxType.DOCKER, config) as sandbox:
    # 1) Write a file
    requirements_file = '/sandbox/requirements.txt'
    await sandbox.execute_tool('file_operation', {
        'operation': 'write', 'file_path': f'{requirements_file}', 'content': 'numpy\npandas\nmodelscope\n'
    })
    # 2) Execute Python code
    result = await sandbox.execute_tool('python_executor', {
        'code': f"print('Hello from sandbox!')\nprint(open(f'{requirements_file}').read())"
    })
    print(result.output)

    # 3) Execute CLI
    result_cli = await sandbox.execute_command(f'pip install -r {requirements_file}')
    print(result_cli.stdout, flush=True)

Example of Reading and Writing Host Files in Sandbox

async with LocalSandboxManager() as manager:
    # Create sandbox
    config = DockerSandboxConfig(
        # image='python-sandbox',
        image='python:3.11-slim',
        tools_config={'python_executor': {}, 'file_operation': {}},
        volumes={'~/Code/ms-enclave/output': {'bind': '/sandbox/data', 'mode': 'rw'}}
    )
    sandbox_id = await manager.create_sandbox(SandboxType.DOCKER, config)

    # Write file
    result = await manager.execute_tool(
        sandbox_id, 'file_operation', {'operation': 'write', 'file_path': '/sandbox/data/hello.txt', 'content': 'Hello, Sandbox!'}
    )
    print(result.model_dump())

Error Handling and Debugging

result = await sandbox.execute_tool('python_executor', {'code': 'print(1/0)'})
if result.error:
    print('Error:', result.error)
else:
    print('Output:', result.output)

Development and Testing

# Clone the repository
git clone https://github.com/modelscope/ms-enclave.git
cd ms-enclave

# Setup virtual environment
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Run examples (provided in the repository)
python examples/sandbox_usage_examples.py
python examples/local_manager_example.py
python examples/server_manager_example.py

Available Tools

  • python_executor: Execute Python code (DOCKER)
  • shell_executor: Execute Shell commands (DOCKER)
  • file_operation: Read/Write/Delete/List files (DOCKER)
  • notebook_executor: Execute via Jupyter Kernel (DOCKER_NOTEBOOK)
  • You can also register custom tools via the Tool factory (@register_tool).

Contribution

We welcome contributions! Please check CONTRIBUTING.md for details.

Steps to Contribute

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Develop and add tests
  4. Run local tests: pytest
  5. Commit changes: git commit -m 'Add amazing feature'
  6. Push the branch: git push origin feature/amazing-feature
  7. Submit a Pull Request

License

This project is licensed under the Apache 2.0 License. See LICENSE for details.

About

A modular and stable agent sandbox runtime environment.

Resources

License

Security policy

Stars

Watchers

Forks

Contributors 2

  •  
  •