An open source project from Data to AI Lab at MIT.
- License: MIT
- Documentation: https://sdv-dev.github.io/SDV
- Homepage: https://github.com/sdv-dev/SDV
The Synthetic Data Vault (SDV) is a tool that allows users to statistically model an entire multi-table, relational dataset. Users can then use the statistical model to generate a synthetic dataset. Synthetic data can be used to supplement, augment and in some cases replace real data when training machine learning models. Additionally, it enables the testing of machine learning or other data dependent software systems without the risk of exposure that comes with data disclosure. Underneath the hood it uses a unique hierarchical generative modeling and recursive sampling techniques.
SDV has been developed and tested on Python 3.5, 3.6 and 3.7
Also, although it is not strictly required, the usage of a virtualenv is highly recommended in order to avoid interfering with other software installed in the system where SDV is run.
The easiest and recommended way to install SDV is using pip:
pip install sdv
This will pull and install the latest stable release from PyPi.
If you want to install from source or contribute to the project please read the Contributing Guide.
In this short tutorial we will guide you through a series of steps that will help you getting started using SDV.
To model a multi table, relational dataset, we follow two steps. In the first step, we will load the data and configures the meta data. In the second step, we will use the sdv API to fit and save a hierarchical model. We will cover these two steps in this section using an example dataset.
SDV comes with a toy dataset to play with, which can be loaded using the sdv.load_demo
function:
from sdv import load_demo
metadata, tables = load_demo(metadata=True)
This will return two objects:
- A
Metadata
object with all the information that SDV needs to know about the dataset.
For more details about how to build the Metadata
for your own dataset, please refer to the
Metadata section of the documentation.
- A dictionary containing three
pandas.DataFrames
with the tables described in the metadata object.
The returned objects contain the following information:
{
'users':
user_id country gender age
0 0 USA M 34
1 1 UK F 23
2 2 ES None 44
3 3 UK M 22
4 4 USA F 54
5 5 DE M 57
6 6 BG F 45
7 7 ES None 41
8 8 FR F 23
9 9 UK None 30,
'sessions':
session_id user_id device os
0 0 0 mobile android
1 1 1 tablet ios
2 2 1 tablet android
3 3 2 mobile android
4 4 4 mobile ios
5 5 5 mobile android
6 6 6 mobile ios
7 7 6 tablet ios
8 8 6 mobile ios
9 9 8 tablet ios,
'transactions':
transaction_id session_id timestamp amount approved
0 0 0 2019-01-01 12:34:32 100.0 True
1 1 0 2019-01-01 12:42:21 55.3 True
2 2 1 2019-01-07 17:23:11 79.5 True
3 3 3 2019-01-10 11:08:57 112.1 False
4 4 5 2019-01-10 21:54:08 110.0 False
5 5 5 2019-01-11 11:21:20 76.3 True
6 6 7 2019-01-22 14:44:10 89.5 True
7 7 8 2019-01-23 10:14:09 132.1 False
8 8 9 2019-01-27 16:09:17 68.0 True
9 9 9 2019-01-29 12:10:48 99.9 True
}
First, we build a hierarchical statistical model of the data using SDV. For this we will
create an instance of the sdv.SDV
class and use its fit
method.
During this process, SDV will traverse across all the tables in your dataset following the primary key-foreign key relationships and learn the probability distributions of the values in the columns.
from sdv import SDV
sdv = SDV()
sdv.fit(metadata, tables)
Once the modeling has finished, you can save your fitted SDV
instance for later usage
using the save
method of your instance.
sdv.save('path/to/sdv.pkl')
The generated pkl
file will not include any of the original data in it, so it can be
safely sent to where the synthetic data will be generated without any privacy concerns.
In order to sample data from the fitted model, we will first need to load it from its
pkl
file. Note that you can skip this step if you are running all the steps sequentially
within the same python session.
sdv = SDV.load('path/to/sdv.pkl')
After loading the instance, we can sample synthetic data using its sample_all
method,
passing the number of rows that we want to generate.
samples = sdv.sample_all(5)
The output will be a dictionary with the same structure as the original tables
dict,
but filled with synthetic data instead of the real one.
Note that only the parent tables of your dataset will have the specified number of rows, as the number of child rows that each row in the parent table has is also sampled following the original distribution of your dataset.
- If you would like to see more usage examples, please have a look at the examples folder or the repository. Please contact us if you have a usage example that you would want to share with the community.
- Please head to the Contributing Guide for more details about this process.
- If you have any doubts, feature requests or detect an error, please open an issue on github
- Also do not forget to check the project documentation site!
If you use SDV for your research, please consider citing the following paper:
Neha Patki, Roy Wedge, Kalyan Veeramachaneni. The Synthetic Data Vault. IEEE DSAA 2016.
@inproceedings{
7796926,
author={N. {Patki} and R. {Wedge} and K. {Veeramachaneni}},
booktitle={2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)},
title={The Synthetic Data Vault},
year={2016},
volume={},
number={},
pages={399-410},
keywords={data analysis;relational databases;synthetic data vault;SDV;generative model;relational database;multivariate modelling;predictive model;data analysis;data science;Data models;Databases;Computational modeling;Predictive models;Hidden Markov models;Numerical models;Synthetic data generation;crowd sourcing;data science;predictive modeling},
doi={10.1109/DSAA.2016.49},
ISSN={},
month={Oct}
}