Skip to content

mlii/ma-gym

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ma-gym

A collection of multi agent environments based on OpenAI gym.

Build Status

Installation

cd ma-gym
pip install -e .

Usage:

import gym
import ma_gym

env = gym.make('Switch2-v0')
done_n = [False for _ in range(env.n_agents)]
ep_reward = 0

obs_n = env.reset()
while not all(done_n):
    env.render()
    obs_n, reward_n, done_n, info = env.step(env.action_space.sample())
    ep_reward += sum(reward_n)
env.close()

Please refer to Wiki for complete usage details

Environments:

  • Checkers
  • Combat
  • PredatorPrey
  • Pong Duel (two player pong game)
  • Switch
Note : openai's environment can be accessed in multi agent form by prefix "ma_".Eg: ma_CartPole-v0
This returns an instance of CartPole-v0 in "multi agent wrapper" having a single agent. 
These environments are helpful during debugging.

Please refer to Wiki for more details.

Zoo!

Checkers-v0 Switch2-v0 Switch4-v0
Checkers-v0.gif Switch2-v0.gif Switch4-v0.gif
PongDuel-v0 Combat-v0 PredatorPrey7x7-v0
PongDuel-v0.gif Combat-v0.gif PredatorPrey7x7-v0.gif
PredatorPrey5x5-v0
PredatorPrey5x5-v0.gif

Testing:

  • Install: pip install pytest
  • Run: pytest

Acknowledgement:

This project was developed to complement my research internship @ SAS.

About

A collection of multi agent environments based on OpenAI gym.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%