Skip to content

Commit

Permalink
add test to demonstrate pair of "half" kernels sharing same public ex…
Browse files Browse the repository at this point in the history
…cess (#3314)

* cleanup how we handle key splitting for transaction offset
add test to demonstrate a pair of transaction halves sharing same kernel excess

* cleanup

* cleanup
  • Loading branch information
antiochp authored May 28, 2020
1 parent b570ac9 commit a8b8dc3
Show file tree
Hide file tree
Showing 4 changed files with 170 additions and 88 deletions.
59 changes: 35 additions & 24 deletions core/src/libtx/build.rs
Original file line number Diff line number Diff line change
Expand Up @@ -199,47 +199,58 @@ where
}

/// Builds a complete transaction.
/// NOTE: We only use this in tests (for convenience).
/// In the real world we use signature aggregation across multiple participants.
pub fn transaction<K, B>(
features: KernelFeatures,
elems: Vec<Box<Append<K, B>>>,
keychain: &K,
builder: &B,
) -> Result<Transaction, Error>
where
K: Keychain,
B: ProofBuild,
{
let mut kernel = TxKernel::with_features(features);

// Construct the message to be signed.
let msg = kernel.msg_to_sign()?;

// Generate kernel public excess and associated signature.
let excess = BlindingFactor::rand(&keychain.secp());
let skey = excess.secret_key(&keychain.secp())?;
kernel.excess = keychain.secp().commit(0, skey)?;
let pubkey = &kernel.excess.to_pubkey(&keychain.secp())?;
kernel.excess_sig = aggsig::sign_with_blinding(&keychain.secp(), &msg, &excess, Some(&pubkey))?;
kernel.verify()?;
transaction_with_kernel(elems, kernel, excess, keychain, builder)
}

/// Build a complete transaction with the provided kernel and corresponding private excess.
/// NOTE: Only used in tests (for convenience).
/// Cannot recommend passing private excess around like this in the real world.
pub fn transaction_with_kernel<K, B>(
elems: Vec<Box<Append<K, B>>>,
kernel: TxKernel,
excess: BlindingFactor,
keychain: &K,
builder: &B,
) -> Result<Transaction, Error>
where
K: Keychain,
B: ProofBuild,
{
let mut ctx = Context { keychain, builder };
let (mut tx, sum) = elems
let (tx, sum) = elems
.iter()
.fold(Ok((Transaction::empty(), BlindSum::new())), |acc, elem| {
elem(&mut ctx, acc)
})?;
let blind_sum = ctx.keychain.blind_sum(&sum)?;

// Split the key so we can generate an offset for the tx.
let split = blind_sum.split(&keychain.secp())?;
let k1 = split.blind_1;
let k2 = split.blind_2;

let mut kern = TxKernel::with_features(features);

// Construct the message to be signed.
let msg = kern.msg_to_sign()?;

// Generate kernel excess and excess_sig using the split key k1.
let skey = k1.secret_key(&keychain.secp())?;
kern.excess = ctx.keychain.secp().commit(0, skey)?;
let pubkey = &kern.excess.to_pubkey(&keychain.secp())?;
kern.excess_sig = aggsig::sign_with_blinding(&keychain.secp(), &msg, &k1, Some(&pubkey))?;

// Store the kernel offset (k2) on the tx.
// Commitments will sum correctly when accounting for the offset.
tx.offset = k2;

// Set the kernel on the tx.
let tx = tx.replace_kernel(kern);

// Update tx with new kernel and offset.
let mut tx = tx.replace_kernel(kernel);
tx.offset = blind_sum.split(&excess, &keychain.secp())?;
Ok(tx)
}

Expand Down
77 changes: 76 additions & 1 deletion core/tests/core.rs
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ use self::core::core::{
aggregate, deaggregate, KernelFeatures, Output, Transaction, TxKernel, Weighting,
};
use self::core::libtx::build::{self, initial_tx, input, output, with_excess};
use self::core::libtx::ProofBuilder;
use self::core::libtx::{aggsig, ProofBuilder};
use self::core::{global, ser};
use crate::common::{new_block, tx1i1o, tx1i2o, tx2i1o};
use grin_core as core;
Expand Down Expand Up @@ -148,6 +148,81 @@ fn build_tx_kernel() {
assert_eq!(2, tx.fee());
}

// Proof of concept demonstrating we can build two transactions that share
// the *same* kernel public excess. This is a key part of building a transaction as two
// "halves" for NRD kernels.
// Note: In a real world scenario multiple participants would build the kernel signature
// using signature aggregation. No party would see the full private kernel excess and
// the halves would need to be constructed with carefully crafted individual offsets to
// adjust the excess as required.
// For the sake of convenience we are simply constructing the kernel directly and we have access
// to the full private excess.
#[test]
fn build_two_half_kernels() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);

// build kernel with associated private excess
let mut kernel = TxKernel::with_features(KernelFeatures::Plain { fee: 2 });

// Construct the message to be signed.
let msg = kernel.msg_to_sign().unwrap();

// Generate a kernel with public excess and associated signature.
let excess = BlindingFactor::rand(&keychain.secp());
let skey = excess.secret_key(&keychain.secp()).unwrap();
kernel.excess = keychain.secp().commit(0, skey).unwrap();
let pubkey = &kernel.excess.to_pubkey(&keychain.secp()).unwrap();
kernel.excess_sig =
aggsig::sign_with_blinding(&keychain.secp(), &msg, &excess, Some(&pubkey)).unwrap();
kernel.verify().unwrap();

let tx1 = build::transaction_with_kernel(
vec![input(10, key_id1), output(8, key_id2.clone())],
kernel.clone(),
excess.clone(),
&keychain,
&builder,
)
.unwrap();

let tx2 = build::transaction_with_kernel(
vec![input(8, key_id2), output(6, key_id3)],
kernel.clone(),
excess.clone(),
&keychain,
&builder,
)
.unwrap();

assert_eq!(
tx1.validate(Weighting::AsTransaction, verifier_cache()),
Ok(()),
);

assert_eq!(
tx2.validate(Weighting::AsTransaction, verifier_cache()),
Ok(()),
);

// The transactions share an identical kernel.
assert_eq!(tx1.kernels()[0], tx2.kernels()[0]);

// The public kernel excess is shared between both "halves".
assert_eq!(tx1.kernels()[0].excess(), tx2.kernels()[0].excess());

// Each transaction is built from different inputs and outputs.
// The offset differs to compensate for the shared excess commitments.
assert!(tx1.offset != tx2.offset);

// For completeness, these are different transactions.
assert!(tx1.hash() != tx2.hash());
}

// Combine two transactions into one big transaction (with multiple kernels)
// and check it still validates.
#[test]
Expand Down
114 changes: 52 additions & 62 deletions keychain/src/types.rs
Original file line number Diff line number Diff line change
Expand Up @@ -12,26 +12,25 @@
// See the License for the specific language governing permissions and
// limitations under the License.

//! Keychain trait and its main supporting types. The Identifier is a
//! semi-opaque structure (just bytes) to track keys within the Keychain.
//! BlindingFactor is a useful wrapper around a private key to help with
//! commitment generation.
use rand::thread_rng;
use std::cmp::min;
use std::convert::TryFrom;
use std::io::Cursor;
use std::ops::Add;
/// Keychain trait and its main supporting types. The Identifier is a
/// semi-opaque structure (just bytes) to track keys within the Keychain.
/// BlindingFactor is a useful wrapper around a private key to help with
/// commitment generation.
use std::{error, fmt};

use crate::blake2::blake2b::blake2b;
use crate::extkey_bip32::{self, ChildNumber};
use serde::{de, ser}; //TODO: Convert errors to use ErrorKind

use crate::util::secp::constants::SECRET_KEY_SIZE;
use crate::util::secp::key::{PublicKey, SecretKey};
use crate::util::secp::key::{PublicKey, SecretKey, ZERO_KEY};
use crate::util::secp::pedersen::Commitment;
use crate::util::secp::{self, Message, Secp256k1, Signature};
use crate::util::static_secp_instance;
use crate::util::ToHex;
use zeroize::Zeroize;

Expand Down Expand Up @@ -242,34 +241,8 @@ impl AsRef<[u8]> for BlindingFactor {
}
}

impl Add for BlindingFactor {
type Output = Result<BlindingFactor, Error>;

// Convenient (and robust) way to add two blinding_factors together.
// Handles "zero" blinding_factors correctly.
//
// let bf = (bf1 + bf2)?;
//
fn add(self, other: BlindingFactor) -> Self::Output {
let secp = static_secp_instance();
let secp = secp.lock();
let keys = vec![self, other]
.into_iter()
.filter(|x| *x != BlindingFactor::zero())
.filter_map(|x| x.secret_key(&secp).ok())
.collect::<Vec<_>>();

if keys.is_empty() {
Ok(BlindingFactor::zero())
} else {
let sum = secp.blind_sum(keys, vec![])?;
Ok(BlindingFactor::from_secret_key(sum))
}
}
}

impl BlindingFactor {
pub fn from_secret_key(skey: secp::key::SecretKey) -> BlindingFactor {
pub fn from_secret_key(skey: SecretKey) -> BlindingFactor {
BlindingFactor::from_slice(&skey.as_ref())
}

Expand All @@ -281,22 +254,45 @@ impl BlindingFactor {
}

pub fn zero() -> BlindingFactor {
BlindingFactor::from_secret_key(secp::key::ZERO_KEY)
BlindingFactor::from_secret_key(ZERO_KEY)
}

pub fn is_zero(&self) -> bool {
self.0 == ZERO_KEY.as_ref()
}

pub fn rand(secp: &Secp256k1) -> BlindingFactor {
BlindingFactor::from_secret_key(SecretKey::new(secp, &mut thread_rng()))
}

pub fn from_hex(hex: &str) -> Result<BlindingFactor, Error> {
let bytes = util::from_hex(hex).unwrap();
Ok(BlindingFactor::from_slice(&bytes))
}

pub fn secret_key(&self, secp: &Secp256k1) -> Result<secp::key::SecretKey, Error> {
if *self == BlindingFactor::zero() {
// TODO - need this currently for tx tests
// the "zero" secret key is not actually a valid secret_key
// and secp lib checks this
Ok(secp::key::ZERO_KEY)
// Handle "zero" blinding_factor correctly, by returning the "zero" key.
// We need this for some of the tests.
pub fn secret_key(&self, secp: &Secp256k1) -> Result<SecretKey, Error> {
if self.is_zero() {
Ok(ZERO_KEY)
} else {
secp::key::SecretKey::from_slice(secp, &self.0).map_err(Error::Secp)
SecretKey::from_slice(secp, &self.0).map_err(Error::Secp)
}
}

// Convenient (and robust) way to add two blinding_factors together.
// Handles "zero" blinding_factors correctly.
pub fn add(&self, other: &BlindingFactor, secp: &Secp256k1) -> Result<BlindingFactor, Error> {
let keys = vec![self, other]
.into_iter()
.filter(|x| !x.is_zero())
.filter_map(|x| x.secret_key(&secp).ok())
.collect::<Vec<_>>();
if keys.is_empty() {
Ok(BlindingFactor::zero())
} else {
let sum = secp.blind_sum(keys, vec![])?;
Ok(BlindingFactor::from_secret_key(sum))
}
}

Expand All @@ -306,26 +302,19 @@ impl BlindingFactor {
/// This prevents an actor from being able to sum a set of inputs, outputs
/// and kernels from a block to identify and reconstruct a particular tx
/// from a block. You would need both k1, k2 to do this.
pub fn split(&self, secp: &Secp256k1) -> Result<SplitBlindingFactor, Error> {
let skey_1 = secp::key::SecretKey::new(secp, &mut thread_rng());

// use blind_sum to subtract skey_1 from our key (to give k = k1 + k2)
pub fn split(
&self,
blind_1: &BlindingFactor,
secp: &Secp256k1,
) -> Result<BlindingFactor, Error> {
// use blind_sum to subtract skey_1 from our key such that skey = skey_1 + skey_2
let skey = self.secret_key(secp)?;
let skey_2 = secp.blind_sum(vec![skey], vec![skey_1.clone()])?;

let blind_1 = BlindingFactor::from_secret_key(skey_1);
let blind_2 = BlindingFactor::from_secret_key(skey_2);

Ok(SplitBlindingFactor { blind_1, blind_2 })
let skey_1 = blind_1.secret_key(secp)?;
let skey_2 = secp.blind_sum(vec![skey], vec![skey_1])?;
Ok(BlindingFactor::from_secret_key(skey_2))
}
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SplitBlindingFactor {
pub blind_1: BlindingFactor,
pub blind_2: BlindingFactor,
}

/// Accumulator to compute the sum of blinding factors. Keeps track of each
/// factor as well as the "sign" with which they should be combined.
#[derive(Clone, Debug, PartialEq)]
Expand Down Expand Up @@ -557,16 +546,17 @@ mod test {
assert!(all_zeros)
}

// split a key, sum the split keys and confirm the sum matches the original key
#[test]
fn split_blinding_factor() {
let secp = Secp256k1::new();
let skey_in = SecretKey::new(&secp, &mut thread_rng());
let blind = BlindingFactor::from_secret_key(skey_in.clone());
let split = blind.split(&secp).unwrap();
let blind_1 = BlindingFactor::rand(&secp);
let blind_2 = blind.split(&blind_1, &secp).unwrap();

// split a key, sum the split keys and confirm the sum matches the original key
let mut skey_sum = split.blind_1.secret_key(&secp).unwrap();
let skey_2 = split.blind_2.secret_key(&secp).unwrap();
let mut skey_sum = blind_1.secret_key(&secp).unwrap();
let skey_2 = blind_2.secret_key(&secp).unwrap();
skey_sum.add_assign(&secp, &skey_2).unwrap();
assert_eq!(skey_in, skey_sum);
}
Expand Down
8 changes: 7 additions & 1 deletion pool/src/pool.rs
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@ use grin_util as util;
use std::cmp::Reverse;
use std::collections::{HashMap, HashSet};
use std::sync::Arc;
use util::static_secp_instance;

pub struct Pool<B, V>
where
Expand Down Expand Up @@ -272,7 +273,12 @@ where
header: &BlockHeader,
) -> Result<BlockSums, PoolError> {
let overage = tx.overage();
let offset = (header.total_kernel_offset() + tx.offset.clone())?;

let offset = {
let secp = static_secp_instance();
let secp = secp.lock();
header.total_kernel_offset().add(&tx.offset, &secp)
}?;

let block_sums = self.blockchain.get_block_sums(&header.hash())?;

Expand Down

0 comments on commit a8b8dc3

Please sign in to comment.