Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified onnxruntime/test/testdata/input_propagated_to_output.onnx
Binary file not shown.
113 changes: 113 additions & 0 deletions onnxruntime/test/testdata/input_propagated_to_output.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
"""
Run this script to recreate the original onnx model.
Example usage:
python input_propagated_to_output.py input_propagated_to_output.onnx
"""

import sys

import numpy as np
import onnx


def order_repeated_field(repeated_proto, key_name, order):
order = list(order)
repeated_proto.sort(key=lambda x: order.index(getattr(x, key_name)))


def make_node(op_type, inputs, outputs, name=None, doc_string=None, domain=None, **kwargs):
node = onnx.helper.make_node(op_type, inputs, outputs, name, doc_string, domain, **kwargs)
if doc_string == "":
node.doc_string = ""
order_repeated_field(node.attribute, "name", kwargs.keys())
return node


def make_graph(*args, doc_string=None, **kwargs):
graph = onnx.helper.make_graph(*args, doc_string=doc_string, **kwargs)
if doc_string == "":
graph.doc_string = ""
return graph


W1 = np.array(
[
[[[0.3258337378501892]], [[0.1461111307144165]], [[-0.4239698648452759]]],
[[[0.14769716560840607]], [[0.20565544068813324]], [[-0.5241780877113342]]],
[[[0.07987150549888611]], [[-0.17475983500480652]], [[0.005230882670730352]]],
],
dtype=np.float32,
)

B1 = np.array(
[-0.3170531392097473, -0.2701416313648224, -0.14249320328235626],
dtype=np.float32,
)

W3 = np.array(
[
[[[0.14025720953941345]], [[0.1433156430721283]], [[-0.1403128057718277]]],
[[[-0.07530076801776886]], [[0.11853527277708054]], [[-0.19437682628631592]]],
[[[0.5786639451980591]], [[-0.28565627336502075]], [[0.9048876166343689]]],
],
dtype=np.float32,
)

B3 = np.array(
[-0.13307525217533112, 0.5522456169128418, 0.6449958086013794],
dtype=np.float32,
)

W5 = np.array(
[
[[[-0.08959630876779556]], [[0.07607565075159073]], [[0.24446037411689758]]],
[[[-0.06293385475873947]], [[-0.41520264744758606]], [[-0.83400559425354]]],
[[[-0.031176576390862465]], [[-0.04187283664941788]], [[-0.439873069524765]]],
],
dtype=np.float32,
)

B5 = np.array(
[0.5949633717536926, -0.40198755264282227, -0.20182392001152039],
dtype=np.float32,
)

model = onnx.helper.make_model(
opset_imports=[onnx.helper.make_operatorsetid("", 14)],
ir_version=7,
graph=make_graph(
name="input_propagated_to_output",
inputs=[
onnx.helper.make_tensor_value_info("input", onnx.TensorProto.FLOAT, shape=[1, 3, 1, 3]),
],
outputs=[
onnx.helper.make_tensor_value_info("X6", onnx.TensorProto.FLOAT, shape=[1, 3, 1, 3]),
onnx.helper.make_tensor_value_info("X1", onnx.TensorProto.FLOAT, shape=[1, 3, 1, 3]),
onnx.helper.make_tensor_value_info("input", onnx.TensorProto.FLOAT, shape=[1, 3, 1, 3]),
onnx.helper.make_tensor_value_info("X2", onnx.TensorProto.FLOAT, shape=[1, 3, 1, 3]),
onnx.helper.make_tensor_value_info("X4", onnx.TensorProto.FLOAT, shape=[1, 3, 1, 3]),
onnx.helper.make_tensor_value_info("X3", onnx.TensorProto.FLOAT, shape=[1, 3, 1, 3]),
onnx.helper.make_tensor_value_info("X5", onnx.TensorProto.FLOAT, shape=[1, 3, 1, 3]),
],
initializer=[
onnx.numpy_helper.from_array(W1, name="W1"),
onnx.numpy_helper.from_array(W3, name="W3"),
onnx.numpy_helper.from_array(W5, name="W5"),
onnx.numpy_helper.from_array(B1, name="B1"),
onnx.numpy_helper.from_array(B3, name="B3"),
onnx.numpy_helper.from_array(B5, name="B5"),
],
nodes=[
make_node("Relu", inputs=["input"], outputs=["X1"], name="Relu1"),
make_node("Conv", inputs=["X1", "W1", "B1"], outputs=["X2"], name="Conv1"),
make_node("Relu", inputs=["X2"], outputs=["X3"], name="Relu2"),
make_node("Conv", inputs=["X3", "W3", "B3"], outputs=["X4"], name="Conv2"),
make_node("Conv", inputs=["X1", "W5", "B5"], outputs=["X5"], name="Conv3"),
make_node("Add", inputs=["X4", "X5"], outputs=["X6"], name="Add"),
],
),
)

if __name__ == "__main__" and len(sys.argv) == 2:
_, out_path = sys.argv
onnx.save(model, out_path)
96 changes: 73 additions & 23 deletions onnxruntime/test/testdata/test_dangling_input_segment_ids.py
Original file line number Diff line number Diff line change
@@ -1,17 +1,13 @@
"""
Run this script to recreate the original onnx model.
Example usage:
python test_dangling_input_segment_ids.py out_model_path.onnx
python test_dangling_input_segment_ids.py test_dangling_input_segment_ids.onnx
"""

import os
import sys

import numpy as np
import onnx
from onnx import TensorProto, helper, numpy_helper

DATA_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_dangling_input_segment_ids")


def order_repeated_field(repeated_proto, key_name, order):
Expand All @@ -20,50 +16,104 @@ def order_repeated_field(repeated_proto, key_name, order):


def make_node(op_type, inputs, outputs, name=None, doc_string=None, domain=None, **kwargs):
node = helper.make_node(op_type, inputs, outputs, name, doc_string, domain, **kwargs)
node = onnx.helper.make_node(op_type, inputs, outputs, name, doc_string, domain, **kwargs)
if doc_string == "":
node.doc_string = ""
order_repeated_field(node.attribute, "name", kwargs.keys())
return node


def make_graph(*args, doc_string=None, **kwargs):
graph = helper.make_graph(*args, doc_string=doc_string, **kwargs)
graph = onnx.helper.make_graph(*args, doc_string=doc_string, **kwargs)
if doc_string == "":
graph.doc_string = ""
return graph


model = helper.make_model(
opset_imports=[helper.make_operatorsetid("", 14), helper.make_operatorsetid("com.microsoft", 1)],
WORD_EMBED = np.array(
[
[0.31524479389190674, 0.8928887248039246, 0.5778571963310242, 0.18401020765304565],
[0.7879292368888855, 0.6120311617851257, 0.05390927195549011, 0.4201936721801758],
[0.6790688633918762, 0.9186017513275146, 0.0004020248888991773, 0.976759135723114],
[0.3765803277492523, 0.973783552646637, 0.6047161221504211, 0.8288457989692688],
[0.5747115015983582, 0.6280761957168579, 0.2855762839317322, 0.5868333578109741],
[0.750021755695343, 0.8583138585090637, 0.7550821900367737, 0.698057234287262],
[0.8644794225692749, 0.3226810097694397, 0.6707887649536133, 0.4508739411830902],
[0.38210275769233704, 0.4108113646507263, 0.401479572057724, 0.31738394498825073],
[0.6219193935394287, 0.4302472770214081, 0.9738020896911621, 0.6778008937835693],
[0.1985698938369751, 0.42670100927352905, 0.3433462381362915, 0.7976388335227966],
[0.8799982666969299, 0.9038419723510742, 0.6627197861671448, 0.2702082693576813],
[0.25236669182777405, 0.8548979163169861, 0.5277146697044373, 0.8021610975265503],
[0.57248854637146, 0.7331425547599792, 0.5190116167068481, 0.7708839178085327],
[0.5688579678535461, 0.4657098650932312, 0.3426889181137085, 0.06820935010910034],
[0.3779241740703583, 0.07962607592344284, 0.9828171133995056, 0.18161284923553467],
[0.8118587136268616, 0.8749616742134094, 0.6884132623672485, 0.5694944262504578],
[0.16097143292427063, 0.46688002347946167, 0.34517204761505127, 0.22503995895385742],
[0.5925118923187256, 0.31226983666419983, 0.9163055419921875, 0.9096355438232422],
[0.257118284702301, 0.11089129745960236, 0.19296273589134216, 0.4995841681957245],
[0.7285856604576111, 0.20819443464279175, 0.2480335533618927, 0.8516718745231628],
[0.4158487319946289, 0.6166850924491882, 0.23366613686084747, 0.10196726024150848],
[0.5158570408821106, 0.47714099287986755, 0.15267165005207062, 0.6218062043190002],
[0.5440101027488708, 0.654137372970581, 0.1445455402135849, 0.7515278458595276],
[0.22204914689064026, 0.5193518400192261, 0.7852960228919983, 0.022330427542328835],
[0.32436245679855347, 0.8729223608970642, 0.8447096347808838, 0.5384405851364136],
[0.8666082620620728, 0.9498059749603271, 0.8264070153236389, 0.8541154265403748],
[0.09874340146780014, 0.651304304599762, 0.703516960144043, 0.6102408170700073],
[0.7996152639389038, 0.034571219235658646, 0.7702387571334839, 0.7317286133766174],
[0.25969839096069336, 0.25706928968429565, 0.6323032975196838, 0.3452974557876587],
[0.796588659286499, 0.4461462199687958, 0.7827494144439697, 0.9904717803001404],
[0.30024832487106323, 0.143005833029747, 0.9013084173202515, 0.5415593981742859],
[0.9747403860092163, 0.6366044282913208, 0.9939129948616028, 0.5460708141326904],
],
dtype=np.float32,
)

POS_EMBED = np.array(
[
[0.5264259576797485, 0.13542790710926056, 0.3557051718235016, 0.026218567043542862],
[0.16039517521858215, 0.7456371784210205, 0.030399689450860023, 0.36654308438301086],
[0.8623462319374084, 0.6926777362823486, 0.6909421682357788, 0.18863679468631744],
[0.4419042766094208, 0.5815774202346802, 0.9897516965866089, 0.20390622317790985],
[0.24773290753364563, 0.2621730864048004, 0.7501724362373352, 0.4569753408432007],
[0.056929439306259155, 0.508516252040863, 0.21196016669273376, 0.7986042499542236],
[0.29733139276504517, 0.027606012299656868, 0.5934324264526367, 0.8438404202461243],
[0.3810161352157593, 0.7498583197593689, 0.5111414790153503, 0.5409517884254456],
[0.9594343304634094, 0.803960919380188, 0.032323066145181656, 0.7093872427940369],
[0.46500149369239807, 0.9475489258766174, 0.22143273055553436, 0.26707202196121216],
[0.08147396147251129, 0.42861881852149963, 0.10901876538991928, 0.6337867379188538],
[0.8029632568359375, 0.6968004703521729, 0.7662113904953003, 0.34245410561561584],
[0.845851480960846, 0.4287687838077545, 0.824009895324707, 0.6264961361885071],
[0.14342305064201355, 0.07838690280914307, 0.018332643434405327, 0.0667250007390976],
[0.458583801984787, 0.11334192007780075, 0.0277833491563797, 0.7548614740371704],
[0.394850492477417, 0.7469384670257568, 0.45240482687950134, 0.4500867426395416],
],
dtype=np.float32,
)

model = onnx.helper.make_model(
opset_imports=[onnx.helper.make_operatorsetid("", 14), onnx.helper.make_operatorsetid("com.microsoft", 1)],
ir_version=7,
graph=make_graph(
name="embed_layernorm_graph",
inputs=[
helper.make_tensor_value_info("input_ids", TensorProto.INT32, shape=[1, 4]),
helper.make_tensor_value_info("segment_ids", TensorProto.INT32, shape=[1, 4]),
onnx.helper.make_tensor_value_info("input_ids", onnx.TensorProto.INT32, shape=[1, 4]),
onnx.helper.make_tensor_value_info("segment_ids", onnx.TensorProto.INT32, shape=[1, 4]),
],
outputs=[
helper.make_tensor_value_info("layernorm_out", TensorProto.FLOAT, shape=[1, 4, 4]),
helper.make_tensor_value_info("mask_index_out", TensorProto.INT32, shape=[1]),
onnx.helper.make_tensor_value_info("layernorm_out", onnx.TensorProto.FLOAT, shape=[1, 4, 4]),
onnx.helper.make_tensor_value_info("mask_index_out", onnx.TensorProto.INT32, shape=[1]),
],
initializer=[
numpy_helper.from_array(
np.load(os.path.join(DATA_DIR, "const0_word_embed.npy")).astype("float32").reshape([32, 4]),
name="word_embed",
),
numpy_helper.from_array(
np.load(os.path.join(DATA_DIR, "const1_pos_embed.npy")).astype("float32").reshape([16, 4]),
name="pos_embed",
),
numpy_helper.from_array(
onnx.numpy_helper.from_array(WORD_EMBED, name="word_embed"),
onnx.numpy_helper.from_array(POS_EMBED, name="pos_embed"),
onnx.numpy_helper.from_array(
np.array(
[0.6185135841369629, 0.010364261455833912, 0.5386272668838501, 0.0030179566238075495],
dtype="float32",
),
name="gamma",
),
numpy_helper.from_array(
onnx.numpy_helper.from_array(
np.array(
[0.9511938095092773, 0.9054020047187805, 0.7959669232368469, 0.9152743220329285], dtype="float32"
),
Expand Down
Loading