Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Cerebras Integration #3585

Merged
merged 4 commits into from
Sep 30, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 40 additions & 0 deletions .github/workflows/contrib-tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -474,6 +474,46 @@ jobs:
file: ./coverage.xml
flags: unittests

CerebrasTest:
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, macos-latest, windows-2019]
python-version: ["3.9", "3.10", "3.11", "3.12"]
exclude:
- os: macos-latest
python-version: "3.9"
steps:
- uses: actions/checkout@v4
with:
lfs: true
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install packages and dependencies for all tests
run: |
python -m pip install --upgrade pip wheel
pip install pytest-cov>=5
- name: Install packages and dependencies for Cerebras
run: |
pip install -e .[cerebras_cloud_sdk,test]
- name: Set AUTOGEN_USE_DOCKER based on OS
shell: bash
run: |
if [[ ${{ matrix.os }} != ubuntu-latest ]]; then
echo "AUTOGEN_USE_DOCKER=False" >> $GITHUB_ENV
fi
- name: Coverage
run: |
pytest test/oai/test_cerebras.py --skip-openai
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
with:
file: ./coverage.xml
flags: unittests

MistralTest:
runs-on: ${{ matrix.os }}
strategy:
Expand Down
2 changes: 2 additions & 0 deletions autogen/logger/file_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from autogen import Agent, ConversableAgent, OpenAIWrapper
from autogen.oai.anthropic import AnthropicClient
from autogen.oai.bedrock import BedrockClient
from autogen.oai.cerebras import CerebrasClient
from autogen.oai.cohere import CohereClient
from autogen.oai.gemini import GeminiClient
from autogen.oai.groq import GroqClient
Expand Down Expand Up @@ -210,6 +211,7 @@ def log_new_client(
client: (
AzureOpenAI
| OpenAI
| CerebrasClient
| GeminiClient
| AnthropicClient
| MistralAIClient
Expand Down
2 changes: 2 additions & 0 deletions autogen/logger/sqlite_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
if TYPE_CHECKING:
from autogen import Agent, ConversableAgent, OpenAIWrapper
from autogen.oai.anthropic import AnthropicClient
from autogen.oai.cerebras import CerebrasClient
from autogen.oai.bedrock import BedrockClient
from autogen.oai.cohere import CohereClient
from autogen.oai.gemini import GeminiClient
Expand Down Expand Up @@ -397,6 +398,7 @@ def log_new_client(
client: Union[
AzureOpenAI,
OpenAI,
CerebrasClient,
GeminiClient,
AnthropicClient,
MistralAIClient,
Expand Down
268 changes: 268 additions & 0 deletions autogen/oai/cerebras.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,268 @@
"""Create an OpenAI-compatible client using Cerebras's API.

Example:
llm_config={
"config_list": [{
"api_type": "cerebras",
"model": "llama3.1-8b",
"api_key": os.environ.get("CEREBRAS_API_KEY")
}]
}

agent = autogen.AssistantAgent("my_agent", llm_config=llm_config)

Install Cerebras's python library using: pip install --upgrade cerebras_cloud_sdk

Resources:
- https://inference-docs.cerebras.ai/quickstart
"""

from __future__ import annotations

import copy
import os
import time
import warnings
from typing import Any, Dict, List

from cerebras.cloud.sdk import Cerebras, Stream
from openai.types.chat import ChatCompletion, ChatCompletionMessageToolCall
from openai.types.chat.chat_completion import ChatCompletionMessage, Choice
from openai.types.completion_usage import CompletionUsage

from autogen.oai.client_utils import should_hide_tools, validate_parameter

CEREBRAS_PRICING_1K = {
# Convert pricing per million to per thousand tokens.
"llama3.1-8b": (0.10 / 1000, 0.10 / 1000),
"llama3.1-70b": (0.60 / 1000, 0.60 / 1000),
}


class CerebrasClient:
"""Client for Cerebras's API."""

def __init__(self, api_key = None, **kwargs):
"""Requires api_key or environment variable to be set

Args:
api_key (str): The API key for using Cerebras (or environment variable CEREBRAS_API_KEY needs to be set)
"""
# Ensure we have the api_key upon instantiation
self.api_key = api_key
if not self.api_key:
self.api_key = os.getenv("CEREBRAS_API_KEY")

assert (
self.api_key
), "Please include the api_key in your config list entry for Cerebras or set the CEREBRAS_API_KEY env variable."

def message_retrieval(self, response: ChatCompletion) -> List:
"""
Retrieve and return a list of strings or a list of Choice.Message from the response.

NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object,
since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used.
"""
return [choice.message for choice in response.choices]

def cost(self, response: ChatCompletion) -> float:
# Note: This field isn't explicitly in `ChatCompletion`, but is injected during chat creation.
return response.cost

@staticmethod
def get_usage(response: ChatCompletion) -> Dict:
"""Return usage summary of the response using RESPONSE_USAGE_KEYS."""
# ... # pragma: no cover
return {
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens,
"cost": response.cost,
"model": response.model,
}

def parse_params(self, params: Dict[str, Any]) -> Dict[str, Any]:
"""Loads the parameters for Cerebras API from the passed in parameters and returns a validated set. Checks types, ranges, and sets defaults"""
cerebras_params = {}

# Check that we have what we need to use Cerebras's API
# We won't enforce the available models as they are likely to change
cerebras_params["model"] = params.get("model", None)
assert cerebras_params[
"model"
], "Please specify the 'model' in your config list entry to nominate the Cerebras model to use."

# Validate allowed Cerebras parameters
# https://inference-docs.cerebras.ai/api-reference/chat-completions
cerebras_params["max_tokens"] = validate_parameter(params, "max_tokens", int, True, None, (0, None), None)
cerebras_params["seed"] = validate_parameter(params, "seed", int, True, None, None, None)
cerebras_params["stream"] = validate_parameter(params, "stream", bool, True, False, None, None)
cerebras_params["temperature"] = validate_parameter(params, "temperature", (int, float), True, 1, (0, 1.5), None)
cerebras_params["top_p"] = validate_parameter(params, "top_p", (int, float), True, None, None, None)

return cerebras_params

def create(self, params: Dict) -> ChatCompletion:

messages = params.get("messages", [])

# Convert AutoGen messages to Cerebras messages
cerebras_messages = oai_messages_to_cerebras_messages(messages)

# Parse parameters to the Cerebras API's parameters
cerebras_params = self.parse_params(params)

# Add tools to the call if we have them and aren't hiding them
if "tools" in params:
hide_tools = validate_parameter(
params, "hide_tools", str, False, "never", None, ["if_all_run", "if_any_run", "never"]
)
if not should_hide_tools(cerebras_messages, params["tools"], hide_tools):
cerebras_params["tools"] = params["tools"]

cerebras_params["messages"] = cerebras_messages

# We use chat model by default, and set max_retries to 5 (in line with typical retries loop)
client = Cerebras(api_key=self.api_key, max_retries=5)

# Token counts will be returned
prompt_tokens = 0
completion_tokens = 0
total_tokens = 0

# Streaming tool call recommendations
streaming_tool_calls = []

ans = None
try:
response = client.chat.completions.create(**cerebras_params)
except Exception as e:
raise RuntimeError(f"Cerebras exception occurred: {e}")
else:

if cerebras_params["stream"]:
# Read in the chunks as they stream, taking in tool_calls which may be across
# multiple chunks if more than one suggested
ans = ""
for chunk in response:
# Grab first choice, which _should_ always be generated.
ans = ans + (chunk.choices[0].delta.content or "")

if chunk.choices[0].delta.tool_calls:
# We have a tool call recommendation
for tool_call in chunk.choices[0].delta.tool_calls:
streaming_tool_calls.append(
ChatCompletionMessageToolCall(
id=tool_call.id,
function={
"name": tool_call.function.name,
"arguments": tool_call.function.arguments,
},
type="function",
)
)

if chunk.choices[0].finish_reason:
prompt_tokens = chunk.x_cerebras.usage.prompt_tokens
completion_tokens = chunk.x_cerebras.usage.completion_tokens
total_tokens = chunk.x_cerebras.usage.total_tokens
else:
# Non-streaming finished
ans: str = response.choices[0].message.content

prompt_tokens = response.usage.prompt_tokens
completion_tokens = response.usage.completion_tokens
total_tokens = response.usage.total_tokens

if response is not None:
if isinstance(response, Stream):
# Streaming response
if chunk.choices[0].finish_reason == "tool_calls":
cerebras_finish = "tool_calls"
tool_calls = streaming_tool_calls
else:
cerebras_finish = "stop"
tool_calls = None

response_content = ans
response_id = chunk.id
else:
# Non-streaming response
# If we have tool calls as the response, populate completed tool calls for our return OAI response
if response.choices[0].finish_reason == "tool_calls":
cerebras_finish = "tool_calls"
tool_calls = []
for tool_call in response.choices[0].message.tool_calls:
tool_calls.append(
ChatCompletionMessageToolCall(
id=tool_call.id,
function={"name": tool_call.function.name, "arguments": tool_call.function.arguments},
type="function",
)
)
else:
cerebras_finish = "stop"
tool_calls = None

response_content = response.choices[0].message.content
response_id = response.id
else:
raise RuntimeError("Failed to get response from Cerebras after retrying 5 times.")

# 3. convert output
message = ChatCompletionMessage(
role="assistant",
content=response_content,
function_call=None,
tool_calls=tool_calls,
)
choices = [Choice(finish_reason=cerebras_finish, index=0, message=message)]

response_oai = ChatCompletion(
id=response_id,
model=cerebras_params["model"],
created=int(time.time()),
object="chat.completion",
choices=choices,
usage=CompletionUsage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
),
# Note: This seems to be a field that isn't in the schema of `ChatCompletion`, so Pydantic
# just adds it dynamically.
cost=calculate_cerebras_cost(prompt_tokens, completion_tokens, cerebras_params["model"]),
)

return response_oai


def oai_messages_to_cerebras_messages(messages: list[Dict[str, Any]]) -> list[dict[str, Any]]:
"""Convert messages from OAI format to Cerebras's format.
We correct for any specific role orders and types.
"""

cerebras_messages = copy.deepcopy(messages)

# Remove the name field
for message in cerebras_messages:
if "name" in message:
message.pop("name", None)

return cerebras_messages


def calculate_cerebras_cost(input_tokens: int, output_tokens: int, model: str) -> float:
"""Calculate the cost of the completion using the Cerebras pricing."""
total = 0.0

if model in CEREBRAS_PRICING_1K:
input_cost_per_k, output_cost_per_k = CEREBRAS_PRICING_1K[model]
input_cost = (input_tokens / 1000) * input_cost_per_k
output_cost = (output_tokens / 1000) * output_cost_per_k
total = input_cost + output_cost
else:
warnings.warn(f"Cost calculation not available for model {model}", UserWarning)

return total
12 changes: 12 additions & 0 deletions autogen/oai/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,13 @@
TOOL_ENABLED = True
ERROR = None

try:
from autogen.oai.cerebras import CerebrasClient

cerebras_import_exception: Optional[ImportError] = None
except ImportError as e:
cerebras_import_exception = e

try:
from autogen.oai.gemini import GeminiClient

Expand Down Expand Up @@ -505,6 +512,11 @@ def _register_default_client(self, config: Dict[str, Any], openai_config: Dict[s
self._configure_azure_openai(config, openai_config)
client = AzureOpenAI(**openai_config)
self._clients.append(OpenAIClient(client))
elif api_type is not None and api_type.startswith("cerebras"):
if cerebras_import_exception:
raise ImportError("Please install `cerebras_cloud_sdk` to use Cerebras OpenAI API.")
client = CerebrasClient(**openai_config)
self._clients.append(client)
elif api_type is not None and api_type.startswith("google"):
if gemini_import_exception:
raise ImportError("Please install `google-generativeai` to use Google OpenAI API.")
Expand Down
2 changes: 2 additions & 0 deletions autogen/runtime_logging.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
from autogen import Agent, ConversableAgent, OpenAIWrapper
from autogen.oai.anthropic import AnthropicClient
from autogen.oai.bedrock import BedrockClient
from autogen.oai.cerebras import CerebrasClient
from autogen.oai.cohere import CohereClient
from autogen.oai.gemini import GeminiClient
from autogen.oai.groq import GroqClient
Expand Down Expand Up @@ -116,6 +117,7 @@ def log_new_client(
client: Union[
AzureOpenAI,
OpenAI,
CerebrasClient,
GeminiClient,
AnthropicClient,
MistralAIClient,
Expand Down
1 change: 1 addition & 0 deletions samples/apps/autogen-studio/autogenstudio/datamodel.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,6 +126,7 @@ class LLMConfig(SQLModel, table=False):

class ModelTypes(str, Enum):
openai = "open_ai"
cerebras = "cerebras"
google = "google"
azure = "azure"
anthropic = "anthropic"
Expand Down
Loading
Loading