Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Groq Client #3003

Merged
merged 6 commits into from
Jun 28, 2024
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 40 additions & 0 deletions .github/workflows/contrib-tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -598,3 +598,43 @@ jobs:
with:
file: ./coverage.xml
flags: unittests

GroqTest:
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, macos-latest, windows-2019]
python-version: ["3.9", "3.10", "3.11", "3.12"]
exclude:
- os: macos-latest
python-version: "3.9"
steps:
- uses: actions/checkout@v4
with:
lfs: true
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install packages and dependencies for all tests
run: |
python -m pip install --upgrade pip wheel
pip install pytest-cov>=5
- name: Install packages and dependencies for Groq
run: |
pip install -e .[groq,test]
- name: Set AUTOGEN_USE_DOCKER based on OS
shell: bash
run: |
if [[ ${{ matrix.os }} != ubuntu-latest ]]; then
echo "AUTOGEN_USE_DOCKER=False" >> $GITHUB_ENV
fi
- name: Coverage
run: |
pytest test/oai/test_groq.py --skip-openai
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
with:
file: ./coverage.xml
flags: unittests
3 changes: 2 additions & 1 deletion autogen/logger/file_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from autogen import Agent, ConversableAgent, OpenAIWrapper
from autogen.oai.anthropic import AnthropicClient
from autogen.oai.gemini import GeminiClient
from autogen.oai.groq import GroqClient
from autogen.oai.mistral import MistralAIClient
from autogen.oai.together import TogetherClient

Expand Down Expand Up @@ -204,7 +205,7 @@ def log_new_wrapper(

def log_new_client(
self,
client: AzureOpenAI | OpenAI | GeminiClient | AnthropicClient | MistralAIClient | TogetherClient,
client: AzureOpenAI | OpenAI | GeminiClient | AnthropicClient | MistralAIClient | TogetherClient | GroqClient,
wrapper: OpenAIWrapper,
init_args: Dict[str, Any],
) -> None:
Expand Down
3 changes: 2 additions & 1 deletion autogen/logger/sqlite_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
from autogen import Agent, ConversableAgent, OpenAIWrapper
from autogen.oai.anthropic import AnthropicClient
from autogen.oai.gemini import GeminiClient
from autogen.oai.groq import GroqClient
from autogen.oai.mistral import MistralAIClient
from autogen.oai.together import TogetherClient

Expand Down Expand Up @@ -391,7 +392,7 @@ def log_function_use(self, source: Union[str, Agent], function: F, args: Dict[st

def log_new_client(
self,
client: Union[AzureOpenAI, OpenAI, GeminiClient, AnthropicClient, MistralAIClient, TogetherClient],
client: Union[AzureOpenAI, OpenAI, GeminiClient, AnthropicClient, MistralAIClient, TogetherClient, GroqClient],
wrapper: OpenAIWrapper,
init_args: Dict[str, Any],
) -> None:
Expand Down
11 changes: 11 additions & 0 deletions autogen/oai/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,13 @@
except ImportError as e:
together_import_exception = e

try:
from autogen.oai.groq import GroqClient

groq_import_exception: Optional[ImportError] = None
except ImportError as e:
groq_import_exception = e

logger = logging.getLogger(__name__)
if not logger.handlers:
# Add the console handler.
Expand Down Expand Up @@ -484,6 +491,10 @@ def _register_default_client(self, config: Dict[str, Any], openai_config: Dict[s
if together_import_exception:
raise ImportError("Please install `together` to use the Together.AI API.")
self._clients.append(TogetherClient(**config))
elif api_type is not None and api_type.startswith("groq"):
if groq_import_exception:
raise ImportError("Please install `groq` to use the Groq API.")
self._clients.append(GroqClient(**config))
else:
client = OpenAI(**openai_config)
self._clients.append(OpenAIClient(client))
Expand Down
289 changes: 289 additions & 0 deletions autogen/oai/groq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,289 @@
"""Create an OpenAI-compatible client using Groq's API.

Example:
llm_config={
"config_list": [{
"api_type": "groq",
"model": "mixtral-8x7b-32768",
"api_key": os.environ.get("GROQ_API_KEY")
}
]}

agent = autogen.AssistantAgent("my_agent", llm_config=llm_config)

Install Groq's python library using: pip install --upgrade groq

Resources:
- https://console.groq.com/docs/quickstart
"""

from __future__ import annotations

import copy
import os
import time
import warnings
from typing import Any, Dict, List

from groq import Groq, Stream
from openai.types.chat import ChatCompletion, ChatCompletionMessageToolCall
from openai.types.chat.chat_completion import ChatCompletionMessage, Choice
from openai.types.completion_usage import CompletionUsage

from autogen.oai.client_utils import should_hide_tools, validate_parameter

# Cost per thousand tokens - Input / Output (NOTE: Convert $/Million to $/K)
GROQ_PRICING_1K = {
"llama3-70b-8192": (0.00059, 0.00079),
"mixtral-8x7b-32768": (0.00024, 0.00024),
"llama3-8b-8192": (0.00005, 0.00008),
"gemma-7b-it": (0.00007, 0.00007),
}


class GroqClient:
"""Client for Groq's API."""

def __init__(self, **kwargs):
"""Requires api_key or environment variable to be set
marklysze marked this conversation as resolved.
Show resolved Hide resolved

Args:
api_key (str): The API key for using Groq (or environment variable GROQ_API_KEY needs to be set)
"""
# Ensure we have the api_key upon instantiation
self.api_key = kwargs.get("api_key", None)
if not self.api_key:
self.api_key = os.getenv("GROQ_API_KEY")

assert (
self.api_key
), "Please include the api_key in your config list entry for Groq or set the GROQ_API_KEY env variable."

def message_retrieval(self, response) -> List:
"""
Retrieve and return a list of strings or a list of Choice.Message from the response.

NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object,
since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used.
"""
return [choice.message for choice in response.choices]

def cost(self, response) -> float:
return response.cost

@staticmethod
def get_usage(response) -> Dict:
"""Return usage summary of the response using RESPONSE_USAGE_KEYS."""
# ... # pragma: no cover
return {
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens,
"cost": response.cost,
"model": response.model,
}

def parse_params(self, params: Dict[str, Any]) -> Dict[str, Any]:
"""Loads the parameters for Groq API from the passed in parameters and returns a validated set. Checks types, ranges, and sets defaults"""
groq_params = {}

# Check that we have what we need to use Groq's API
# We won't enforce the available models as they are likely to change
groq_params["model"] = params.get("model", None)
assert groq_params[
"model"
], "Please specify the 'model' in your config list entry to nominate the Groq model to use."

# Validate allowed Groq parameters
# https://console.groq.com/docs/api-reference#chat
groq_params["frequency_penalty"] = validate_parameter(
params, "frequency_penalty", (int, float), True, None, (-2, 2), None
)
groq_params["max_tokens"] = validate_parameter(params, "max_tokens", int, True, None, (0, None), None)
groq_params["presence_penalty"] = validate_parameter(
params, "presence_penalty", (int, float), True, None, (-2, 2), None
)
groq_params["seed"] = validate_parameter(params, "seed", int, True, None, None, None)
groq_params["stream"] = validate_parameter(params, "stream", bool, True, False, None, None)
groq_params["temperature"] = validate_parameter(params, "temperature", (int, float), True, 1, (0, 2), None)
groq_params["top_p"] = validate_parameter(params, "top_p", (int, float), True, None, None, None)

# Groq parameters not supported by their models yet, ignoring
# logit_bias, logprobs, top_logprobs

# Groq parameters we are ignoring:
# n (must be 1), response_format (to enforce JSON but needs prompting as well), user,
# parallel_tool_calls (defaults to True), stop
# function_call (deprecated), functions (deprecated)
# tool_choice (none if no tools, auto if there are tools)

return groq_params

def create(self, params: Dict) -> ChatCompletion:

messages = params.get("messages", [])

# Convert AutoGen messages to Groq messages
groq_messages = oai_messages_to_groq_messages(messages)

# Parse parameters to the Groq API's parameters
groq_params = self.parse_params(params)

# Add tools to the call if we have them and aren't hiding them
if "tools" in params:
hide_tools = validate_parameter(
params, "hide_tools", str, False, "never", None, ["if_all_run", "if_any_run", "never"]
)
if not should_hide_tools(groq_messages, params["tools"], hide_tools):
groq_params["tools"] = params["tools"]

groq_params["messages"] = groq_messages

# We use chat model by default, and set max_retries to 5 (in line with typical retries loop)
client = Groq(api_key=self.api_key, max_retries=5)

# Token counts will be returned
prompt_tokens = 0
completion_tokens = 0
total_tokens = 0

# Streaming tool call recommendations
streaming_tool_calls = []

ans = None
try:
response = client.chat.completions.create(**groq_params)
except Exception as e:
raise RuntimeError(f"Groq exception occurred: {e}")
else:

if groq_params["stream"]:
# Read in the chunks as they stream, taking in tool_calls which may be across
# multiple chunks if more than one suggested
ans = ""
for chunk in response:
ans = ans + (chunk.choices[0].delta.content or "")

if chunk.choices[0].delta.tool_calls:
# We have a tool call recommendation
for tool_call in chunk.choices[0].delta.tool_calls:
streaming_tool_calls.append(
ChatCompletionMessageToolCall(
id=tool_call.id,
function={
"name": tool_call.function.name,
"arguments": tool_call.function.arguments,
},
type="function",
)
)

if chunk.choices[0].finish_reason:
prompt_tokens = chunk.x_groq.usage.prompt_tokens
completion_tokens = chunk.x_groq.usage.completion_tokens
total_tokens = chunk.x_groq.usage.total_tokens
else:
# Non-streaming finished
ans: str = response.choices[0].message.content

prompt_tokens = response.usage.prompt_tokens
completion_tokens = response.usage.completion_tokens
total_tokens = response.usage.total_tokens

if response is not None:

if isinstance(response, Stream):
# Streaming response
if chunk.choices[0].finish_reason == "tool_calls":
groq_finish = "tool_calls"
tool_calls = streaming_tool_calls
else:
groq_finish = "stop"
tool_calls = None

response_content = ans
response_id = chunk.id
else:
# Non-streaming response
# If we have tool calls as the response, populate completed tool calls for our return OAI response
if response.choices[0].finish_reason == "tool_calls":
groq_finish = "tool_calls"
tool_calls = []
for tool_call in response.choices[0].message.tool_calls:
tool_calls.append(
ChatCompletionMessageToolCall(
id=tool_call.id,
function={"name": tool_call.function.name, "arguments": tool_call.function.arguments},
type="function",
)
)
else:
groq_finish = "stop"
tool_calls = None

response_content = response.choices[0].message.content
response_id = response.id
else:
raise RuntimeError("Failed to get response from Groq after retrying 5 times.")

# 3. convert output
message = ChatCompletionMessage(
role="assistant",
content=response_content,
function_call=None,
tool_calls=tool_calls,
)
choices = [Choice(finish_reason=groq_finish, index=0, message=message)]

response_oai = ChatCompletion(
id=response_id,
model=groq_params["model"],
created=int(time.time()),
object="chat.completion",
choices=choices,
usage=CompletionUsage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
),
cost=calculate_groq_cost(prompt_tokens, completion_tokens, groq_params["model"]),
)

return response_oai


def oai_messages_to_groq_messages(messages: list[Dict[str, Any]]) -> list[dict[str, Any]]:
"""Convert messages from OAI format to Groq's format.
We correct for any specific role orders and types.
"""

groq_messages = copy.deepcopy(messages)

# If we have a message with role='tool', which occurs when a function is executed, change it to 'user'
"""
for msg in together_messages:
if "role" in msg and msg["role"] == "tool":
msg["role"] = "user"
"""

# Remove the name field
for message in groq_messages:
if "name" in message:
message.pop("name", None)

return groq_messages


def calculate_groq_cost(input_tokens: int, output_tokens: int, model: str) -> float:
"""Calculate the cost of the completion using the Groq pricing."""
total = 0.0

if model in GROQ_PRICING_1K:
input_cost_per_k, output_cost_per_k = GROQ_PRICING_1K[model]
input_cost = (input_tokens / 1000) * input_cost_per_k
output_cost = (output_tokens / 1000) * output_cost_per_k
total = input_cost + output_cost
else:
warnings.warn(f"Cost calculation not available for model {model}", UserWarning)

return total
Loading
Loading