Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MongoDB Atlas VectorDB [clean] #2996

Closed
wants to merge 64 commits into from
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
Show all changes
64 commits
Select commit Hold shift + click to select a range
3024021
Create mongodb.py
ranfysvalle02 Jun 12, 2024
37454dc
MongoDB Class for agentchat
Jun 12, 2024
fb86b8a
Update mongodb.py
Jun 14, 2024
275315d
Update base.py
Jun 14, 2024
0bfdc73
Merge branch 'microsoft:main' into main
ranfysvalle02 Jun 14, 2024
5972fd0
Update mongodb.py
Jun 14, 2024
0122481
Merge branch 'main' into main
thinkall Jun 14, 2024
19dbbb8
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 15, 2024
0151b3c
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 15, 2024
4289ef7
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 15, 2024
9d1dbe8
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 15, 2024
9a91bc0
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 15, 2024
5629700
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 15, 2024
fd24baa
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 15, 2024
8f4bb1f
update from PR comments
Jun 15, 2024
61919b2
start notebook progress
Jun 16, 2024
524aa9c
Update agentchat_mongodb_RetrieveChat.ipynb
Jun 16, 2024
85db1af
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 16, 2024
217c66a
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 16, 2024
9f0cdf1
Update mongodb.py
Jun 16, 2024
9c760b6
Merge branch 'main' into main
ranfysvalle02 Jun 16, 2024
f537b24
Create test_mongodb.py
Jun 16, 2024
5f48b00
still broken -- but closer
Jun 17, 2024
fe94978
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 19, 2024
0c08b31
Merge branch 'main' into main
ranfysvalle02 Jun 19, 2024
145e53f
Merge branch 'main' into main
thinkall Jun 19, 2024
10b7d50
Merge branch 'main' into main
ranfysvalle02 Jun 19, 2024
a9d33e0
Getting closer...
Jun 19, 2024
2ce1cd1
pre-commit fix
Jun 19, 2024
86a94ac
Update agentchat_mongodb_RetrieveChat.ipynb
Jun 19, 2024
73652c4
Merge branch 'main' into main
ranfysvalle02 Jun 20, 2024
0781c33
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 20, 2024
aeb0ad8
no longer needed
Jun 20, 2024
315dd5a
Merge branch 'main' into main
ranfysvalle02 Jun 20, 2024
1faa2c7
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 20, 2024
73071dc
Update autogen/agentchat/contrib/vectordb/mongodb.py
ranfysvalle02 Jun 20, 2024
251d4ab
Remove check
Jun 20, 2024
fe5ad78
pre-commit fix
Jun 20, 2024
772c7c7
Merge branch 'main' into main
ranfysvalle02 Jun 20, 2024
7c2e1d6
Merge branch 'main' into main
ranfysvalle02 Jun 20, 2024
a5aef00
Merge branch 'main' into main
thinkall Jun 21, 2024
2fbc502
Few fixes
Jun 21, 2024
d9d696d
Merge branch 'main' of https://github.com/ranfysvalle02/autogen
Jun 21, 2024
3122301
Update agentchat_mongodb_RetrieveChat.ipynb
Jun 21, 2024
54655e8
Update agentchat_mongodb_RetrieveChat.ipynb
Jun 21, 2024
c64e679
Merge branch 'main' into main
thinkall Jun 21, 2024
a82fe0e
Update agentchat_mongodb_RetrieveChat.ipynb
Jun 21, 2024
db47b8f
Merge branch 'main' of https://github.com/ranfysvalle02/autogen
Jun 21, 2024
9a32f0d
Update mongodb.py
Jun 21, 2024
081e24e
Update notebook/agentchat_mongodb_RetrieveChat.ipynb
ranfysvalle02 Jun 21, 2024
48913ab
Update contrib-tests.yml
Jun 21, 2024
4097b4c
testing is getting closer!
Jun 21, 2024
841f2d9
Update mongodb.py
Jun 21, 2024
3ea97f2
pre-commit run --show-diff-on-failure --color=always --all-files
Jun 21, 2024
634f2f8
Update mongodb.py
Jun 21, 2024
1ca4d70
Merge branch 'main' into main
sonichi Jun 21, 2024
4690f32
Merge branch 'main' into main
ranfysvalle02 Jun 21, 2024
9a7fbdd
Merge branch 'main' into main
ranfysvalle02 Jun 21, 2024
0be4fcd
clean commit history
Jun 21, 2024
5f89f21
Merge branch 'main' into main
thinkall Jun 22, 2024
d99247a
Update test/agentchat/contrib/vectordb/test_mongodb.py
ranfysvalle02 Jun 22, 2024
069141e
Merge branch 'main' of https://github.com/ranfysvalle02/autogen
Jun 22, 2024
2a30319
Update mongodb.py
Jun 22, 2024
093272c
Update test_mongodb.py
Jun 22, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion autogen/agentchat/contrib/vectordb/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,7 @@ class VectorDBFactory:
Factory class for creating vector databases.
"""

PREDEFINED_VECTOR_DB = ["chroma", "pgvector"]
PREDEFINED_VECTOR_DB = ["chroma", "pgvector", "mongodb"]

@staticmethod
def create_vector_db(db_type: str, **kwargs) -> VectorDB:
Expand All @@ -207,6 +207,10 @@ def create_vector_db(db_type: str, **kwargs) -> VectorDB:
from .pgvectordb import PGVectorDB

return PGVectorDB(**kwargs)
if db_type.lower() in ["mdb", "mongodb", "atlas"]:
from .mongodb import MongoDBAtlasVectorDB

return MongoDBAtlasVectorDB(**kwargs)
else:
raise ValueError(
f"Unsupported vector database type: {db_type}. Valid types are {VectorDBFactory.PREDEFINED_VECTOR_DB}."
Expand Down
292 changes: 292 additions & 0 deletions autogen/agentchat/contrib/vectordb/mongodb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,292 @@
from typing import Callable, List, Literal

import numpy as np
from pymongo import MongoClient, errors
from pymongo.operations import SearchIndexModel
from sentence_transformers import SentenceTransformer

from .base import Document, ItemID, QueryResults, VectorDB
from .utils import get_logger

logger = get_logger(__name__)


class MongoDBAtlasVectorDB(VectorDB):
"""
A Collection object for MongoDB.
"""

def __init__(
self,
connection_string: str = "",
database_name: str = "vector_db",
embedding_function: Callable = SentenceTransformer("all-MiniLM-L6-v2").encode,
):
"""
Initialize the vector database.

Args:
connection_string: str | The MongoDB connection string to connect to. Default is ''.
database_name: str | The name of the database. Default is 'vector_db'.
embedding_function: The embedding function used to generate the vector representation.
"""
if embedding_function:
self.embedding_function = embedding_function
try:
self.client = MongoClient(connection_string)
self.client.admin.command("ping")
except errors.ServerSelectionTimeoutError as err:
raise ConnectionError("Could not connect to MongoDB server") from err

self.db = self.client[database_name]
self.active_collection = None
# This will get the model dimension size by computing the embeddings dimensions
sentences = [
"The weather is lovely today in paradise.",
]
embeddings = self.embedding_function(sentences)
self.dimensions = len(embeddings[0])

def list_collections(self):
"""
List the collections in the vector database.

Returns:
List[str] | The list of collections.
"""
try:
return self.db.list_collection_names()
except Exception as err:
raise err

def create_collection(
self,
collection_name: str,
overwrite: bool = False,
get_or_create: bool = True,
index_name: str = "default_index",
similarity: Literal["euclidean", "cosine", "dotProduct"] = "cosine",
):
"""
Create a collection in the vector database and create a vector search index in the collection.

Args:
collection_name: str | The name of the collection.
index_name: str | The name of the index.
similarity: str | The similarity metric for the vector search index.
overwrite: bool | Whether to overwrite the collection if it exists. Default is False.
get_or_create: bool | Whether to get the collection if it exists. Default is True
"""
# if overwrite is False and get_or_create is False, raise a ValueError
if not overwrite and not get_or_create:
raise ValueError("If overwrite is False, get_or_create must be True.")
# If overwrite is True and the collection already exists, drop the existing collection
collection_names = self.db.list_collection_names()
if overwrite and collection_name in collection_names:
self.db.drop_collection(collection_name)
# If get_or_create is True and the collection already exists, return the existing collection
if get_or_create and collection_name in collection_names:
return self.db[collection_name]
# If get_or_create is False and the collection already exists, raise a ValueError
if not get_or_create and collection_name in collection_names:
raise ValueError(f"Collection {collection_name} already exists.")

# Create a new collection
collection = self.db.create_collection(collection_name)
# Create a vector search index in the collection
search_index_model = SearchIndexModel(
definition={
"fields": [
{"type": "vector", "numDimensions": self.dimensions, "path": "embedding", "similarity": similarity},
]
},
name=index_name,
type="vectorSearch",
)
# Create the search index
try:
collection.create_search_index(model=search_index_model)
return collection
except Exception as e:
logger.error(f"Error creating search index: {e}")
raise e

def get_collection(self, collection_name: str = None):
"""
Get the collection from the vector database.

Args:
collection_name: str | The name of the collection. Default is None. If None, return the
current active collection.

Returns:
Collection | The collection object.
"""
if collection_name is None:
if self.active_collection is None:
raise ValueError("No collection is specified.")
else:
logger.debug(
f"No collection is specified. Using current active collection {self.active_collection.name}."
)
else:
if collection_name not in self.list_collections():
raise ValueError(f"Collection {collection_name} does not exist.")
if self.active_collection is None:
self.active_collection = self.db[collection_name]
return self.active_collection

def delete_collection(self, collection_name: str):
"""
Delete the collection from the vector database.

Args:
collection_name: str | The name of the collection.
"""
return self.db[collection_name].drop()

def insert_docs(self, docs: List[Document], collection_name: str = None, upsert: bool = False):
"""
Insert documents into the collection of the vector database.

Args:
docs: List[Document] | A list of documents. Each document is a TypedDict `Document`.
collection_name: str | The name of the collection. Default is None.
upsert: bool | Whether to update the document if it exists. Default is False.
"""
if not docs:
return
if docs[0].get("content") is None:
raise ValueError("The document content is required.")
if docs[0].get("id") is None:
raise ValueError("The document id is required.")
collection = self.get_collection(collection_name)
for doc in docs:
if "embedding" not in doc:
doc["embedding"] = np.array(self.embedding_function([str(doc["content"])])).tolist()[0]
if upsert:
for doc in docs:
return collection.replace_one({"id": doc["id"]}, doc, upsert=True)
else:
return collection.insert_many(docs)

def update_docs(self, docs: List[Document], collection_name: str = None):
"""
Update documents in the collection of the vector database.

Args:
docs: List[Document] | A list of documents.
collection_name: str | The name of the collection. Default is None.
"""
return self.insert_docs(docs, collection_name, upsert=True)

def delete_docs(self, ids: List[ItemID], collection_name: str = None):
"""
Delete documents from the collection of the vector database.

Args:
ids: List[ItemID] | A list of document ids. Each id is a typed `ItemID`.
collection_name: str | The name of the collection. Default is None.
"""
collection = self.get_collection(collection_name)
return collection.delete_many({"id": {"$in": ids}})

def get_docs_by_ids(self, ids: List[ItemID] = None, collection_name: str = None):
"""
Retrieve documents from the collection of the vector database based on the ids.

Args:
ids: List[ItemID] | A list of document ids. If None, will return all the documents. Default is None.
collection_name: str | The name of the collection. Default is None.
"""
results = []
if ids is None:
collection = self.get_collection(collection_name)
results = list(collection.find({}, {"embedding": 0}))
else:
for id in ids:
id = str(id)
collection = self.get_collection(collection_name)
results = list(collection.find({"id": {"$in": ids}}, {"embedding": 0}))
return results

def retrieve_docs(
self,
queries: List[str],
collection_name: str = None,
n_results: int = 10,
distance_threshold: float = -1,
index_name: str = "default",
**kwargs,
) -> QueryResults:
"""
Retrieve documents from the collection of the vector database based on the queries.

Args:
queries: List[str] | A list of queries. Each query is a string.
collection_name: str | The name of the collection. Default is None.
n_results: int | The number of relevant documents to return. Default is 10.
distance_threshold: float | The threshold for the distance score, only distance smaller than it will be
returned. Don't filter with it if < 0. Default is -1.
kwargs: Dict | Additional keyword arguments.

Returns:
QueryResults | The query results. Each query result is a list of list of tuples containing the document and
the distance.
"""
results = []
for query_text in queries:
query_vector = np.array(self.embedding_function([query_text])).tolist()[0]
# Find documents with similar vectors using the specified index
search_collection = self.get_collection(collection_name)
pipeline = [
{
"$vectorSearch": {
"index": index_name,
"limit": n_results,
"numCandidates": n_results,
"queryVector": query_vector,
"path": "embedding",
}
},
{"$project": {"score": {"$meta": "vectorSearchScore"}}},
]
if distance_threshold >= 0.00:
similarity_threshold = 1 - distance_threshold
pipeline.append({"$match": {"score": {"gte": similarity_threshold}}})

# do a lookup on the same collection
pipeline.append(
{
"$lookup": {
"from": collection_name,
"localField": "_id",
"foreignField": "_id",
"as": "full_document_array",
}
}
)
pipeline.append(
{
"$addFields": {
"full_document": {
"$arrayElemAt": [
{
"$map": {
"input": "$full_document_array",
"as": "doc",
"in": {"id": "$$doc.id", "content": "$$doc.content"},
}
},
0,
]
}
}
}
)
pipeline.append({"$project": {"full_document_array": 0, "embedding": 0}})
tmp_results = []
for doc in search_collection.aggregate(pipeline):
tmp_results.append((doc["full_document"], doc["score"]))
ranfysvalle02 marked this conversation as resolved.
Show resolved Hide resolved
results.append(tmp_results)
return results
Loading
Loading