Skip to content

Commit

Permalink
Validate llm_config passed to ConversableAgent (issue #1522) (#1654)
Browse files Browse the repository at this point in the history
* Validate llm_config passed to ConversableAgent

Based on #1522, this commit implements the additional validation checks in
`ConversableAgent.`

Add the following validation and `raise ValueError` if:

 - The `llm_config` is `None`.
 - The `llm_config` is valid, but `config_list` is missing or lacks elements.
 - The `config_list` is valid, but no `model` is specified.

The rest of the changes are code churn to adjust or add the test cases.

* Validate llm_config passed to ConversableAgent

Based on #1522, this commit implements the additional validation checks in
`ConversableAgent.`

Add the following validation and `raise ValueError` if:

 - The `llm_config` is `None` (validated in `ConversableAgent`).
 - The `llm_config` has no `model` specified and `config_list` is empty
   (validated in `OpenAIWrapper`).
 - The `config_list` has at least one entry, but not all the entries have
   the `model` is specified (validated in `OpenAIWrapper`).

The rest of the changes are code churn to adjust or add the test cases.

* Validate llm_config passed to ConversableAgent

Based on #1522, this commit implements the additional validation checks in
`ConversableAgent.`

Add the following validation and `raise ValueError` if:

 - The `llm_config` is `None` (validated in `ConversableAgent`).
 - The `llm_config` has no `model` specified and `config_list` is empty
   (validated in `OpenAIWrapper`).
 - The `config_list` has at least one entry, but not all the entries have
   the `model` is specified (validated in `OpenAIWrapper`).

The rest of the changes are code churn to adjust or add the test cases.

* Validate llm_config passed to ConversableAgent

Based on #1522, this commit implements the additional validation checks in
`ConversableAgent.`

Add the following validation and `raise ValueError` if:

 - The `llm_config` is `None` (validated in `ConversableAgent`).
 - The `llm_config` has no `model` specified and `config_list` is empty
   (validated in `OpenAIWrapper`).
 - The `config_list` has at least one entry, but not all the entries have
   the `model` is specified (validated in `OpenAIWrapper`).

The rest of the changes are code churn to adjust or add the test cases.

* Validate llm_config passed to ConversableAgent

Based on #1522, this commit implements the additional validation checks in
`ConversableAgent.`

Add the following validation and `raise ValueError` if:

 - The `llm_config` is `None` (validated in `ConversableAgent`).
 - The `llm_config` has no `model` specified and `config_list` is empty
   (validated in `OpenAIWrapper`).
 - The `config_list` has at least one entry, but not all the entries have
   the `model` is specified (validated in `OpenAIWrapper`).

The rest of the changes are code churn to adjust or add the test cases.

* Fix the test_web_surfer issue

For anyone reading this: you need to `pip install markdownify` for the
`import WebSurferAgent` to succeed. That is needed to run the
`test_web_surfer.py` locally.

Test logic needs `llm_config` that is not `None` and that is not
`False`.

Let us pray that this works as part of GitHub actions ...

* One more fix for llm_config validation contract
  • Loading branch information
gunnarku authored Feb 15, 2024
1 parent 4ccff54 commit d677b47
Show file tree
Hide file tree
Showing 5 changed files with 53 additions and 26 deletions.
2 changes: 1 addition & 1 deletion autogen/agentchat/assistant_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ def __init__(
name (str): agent name.
system_message (str): system message for the ChatCompletion inference.
Please override this attribute if you want to reprogram the agent.
llm_config (dict): llm inference configuration.
llm_config (dict or False or None): llm inference configuration.
Please refer to [OpenAIWrapper.create](/docs/reference/oai/client#create)
for available options.
is_termination_msg (function): a function that takes a message in the form of a dictionary
Expand Down
11 changes: 8 additions & 3 deletions autogen/agentchat/conversable_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ def __init__(
function_map: Optional[Dict[str, Callable]] = None,
code_execution_config: Union[Dict, Literal[False]] = False,
llm_config: Optional[Union[Dict, Literal[False]]] = None,
default_auto_reply: Optional[Union[str, Dict, None]] = "",
default_auto_reply: Union[str, Dict] = "",
description: Optional[str] = None,
):
"""
Expand Down Expand Up @@ -118,11 +118,11 @@ def __init__(
- timeout (Optional, int): The maximum execution time in seconds.
- last_n_messages (Experimental, int or str): The number of messages to look back for code execution.
If set to 'auto', it will scan backwards through all messages arriving since the agent last spoke, which is typically the last time execution was attempted. (Default: auto)
llm_config (dict or False): llm inference configuration.
llm_config (dict or False or None): llm inference configuration.
Please refer to [OpenAIWrapper.create](/docs/reference/oai/client#create)
for available options.
To disable llm-based auto reply, set to False.
default_auto_reply (str or dict or None): default auto reply when no code execution or llm-based reply is generated.
default_auto_reply (str or dict): default auto reply when no code execution or llm-based reply is generated.
description (str): a short description of the agent. This description is used by other agents
(e.g. the GroupChatManager) to decide when to call upon this agent. (Default: system_message)
"""
Expand All @@ -144,6 +144,11 @@ def __init__(
self.llm_config = self.DEFAULT_CONFIG.copy()
if isinstance(llm_config, dict):
self.llm_config.update(llm_config)
# We still have a default `llm_config` because the user didn't
# specify anything. This won't work, so raise an error to avoid
# an obscure message from the OpenAI service.
if self.llm_config == {}:
raise ValueError("Please specify the value for 'llm_config'.")
self.client = OpenAIWrapper(**self.llm_config)

if logging_enabled():
Expand Down
14 changes: 13 additions & 1 deletion autogen/oai/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -361,15 +361,27 @@ def __init__(self, *, config_list: Optional[List[Dict[str, Any]]] = None, **base
if logging_enabled():
log_new_wrapper(self, locals())
openai_config, extra_kwargs = self._separate_openai_config(base_config)
# This *may* work if the `llm_config` has specified the `model` attribute,
# so just warn here.
if type(config_list) is list and len(config_list) == 0:
logger.warning("openai client was provided with an empty config_list, which may not be intended.")
logger.warning("OpenAI client was provided with an empty config_list, which may not be intended.")
# If the `llm_config` has no `model` then the call will fail. Abort now.
if "model" not in extra_kwargs:
raise ValueError("Please specify a value for the 'model' in 'llm_config'.")

self._clients: List[ModelClient] = []
self._config_list: List[Dict[str, Any]] = []

if config_list:
config_list = [config.copy() for config in config_list] # make a copy before modifying
for config in config_list:
# We require that each element of `config_list` has a non-empty value
# for `model` specified unless `extra_kwargs` contains "model".
model = None
if "model" in config:
model = config["model"]
if "model" not in extra_kwargs and (model is None or len(model) == 0):
raise ValueError("Please specify a non-empty 'model' value for every item in 'config_list'.")
self._register_default_client(config, openai_config) # could modify the config
self._config_list.append(
{**extra_kwargs, **{k: v for k, v in config.items() if k not in self.openai_kwargs}}
Expand Down
4 changes: 3 additions & 1 deletion test/agentchat/contrib/test_web_surfer.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,9 @@ def test_web_surfer() -> None:
mp.setenv("OPENAI_API_KEY", MOCK_OPEN_AI_API_KEY)
page_size = 4096
web_surfer = WebSurferAgent(
"web_surfer", llm_config={"config_list": []}, browser_config={"viewport_size": page_size}
"web_surfer",
llm_config={"model": "gpt-4", "config_list": []},
browser_config={"viewport_size": page_size},
)

# Sneak a peak at the function map, allowing us to call the functions for testing here
Expand Down
48 changes: 28 additions & 20 deletions test/agentchat/test_conversable_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -474,7 +474,7 @@ async def test_a_generate_reply_raises_on_messages_and_sender_none(conversable_a
def test_update_function_signature_and_register_functions() -> None:
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", MOCK_OPEN_AI_API_KEY)
agent = ConversableAgent(name="agent", llm_config={})
agent = ConversableAgent(name="agent", llm_config={"config_list": [{"model": "gpt-4", "api_key": ""}]})

def exec_python(cell: str) -> None:
pass
Expand Down Expand Up @@ -618,9 +618,9 @@ def get_origin(d: Dict[str, Callable[..., Any]]) -> Dict[str, Callable[..., Any]
def test_register_for_llm():
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", MOCK_OPEN_AI_API_KEY)
agent3 = ConversableAgent(name="agent3", llm_config={"config_list": []})
agent2 = ConversableAgent(name="agent2", llm_config={"config_list": []})
agent1 = ConversableAgent(name="agent1", llm_config={"config_list": []})
agent3 = ConversableAgent(name="agent3", llm_config={"config_list": [{"model": "gpt-4", "api_key": ""}]})
agent2 = ConversableAgent(name="agent2", llm_config={"config_list": [{"model": "gpt-4", "api_key": ""}]})
agent1 = ConversableAgent(name="agent1", llm_config={"config_list": [{"model": "gpt-4", "api_key": ""}]})

@agent3.register_for_llm()
@agent2.register_for_llm(name="python")
Expand Down Expand Up @@ -691,9 +691,9 @@ async def exec_sh(script: Annotated[str, "Valid shell script to execute."]) -> s
def test_register_for_llm_api_style_function():
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", MOCK_OPEN_AI_API_KEY)
agent3 = ConversableAgent(name="agent3", llm_config={"config_list": []})
agent2 = ConversableAgent(name="agent2", llm_config={"config_list": []})
agent1 = ConversableAgent(name="agent1", llm_config={"config_list": []})
agent3 = ConversableAgent(name="agent3", llm_config={"config_list": [{"model": "gpt-4", "api_key": ""}]})
agent2 = ConversableAgent(name="agent2", llm_config={"config_list": [{"model": "gpt-4", "api_key": ""}]})
agent1 = ConversableAgent(name="agent1", llm_config={"config_list": [{"model": "gpt-4", "api_key": ""}]})

@agent3.register_for_llm(api_style="function")
@agent2.register_for_llm(name="python", api_style="function")
Expand Down Expand Up @@ -762,7 +762,7 @@ async def exec_sh(script: Annotated[str, "Valid shell script to execute."]) -> s
def test_register_for_llm_without_description():
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", MOCK_OPEN_AI_API_KEY)
agent = ConversableAgent(name="agent", llm_config={})
agent = ConversableAgent(name="agent", llm_config={"config_list": [{"model": "gpt-4", "api_key": ""}]})

with pytest.raises(ValueError) as e:

Expand All @@ -774,25 +774,33 @@ def exec_python(cell: Annotated[str, "Valid Python cell to execute."]) -> str:


def test_register_for_llm_without_LLM():
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", MOCK_OPEN_AI_API_KEY)
agent = ConversableAgent(name="agent", llm_config=None)
agent.llm_config = None
assert agent.llm_config is None
try:
ConversableAgent(name="agent", llm_config=None)
assert False, "Expected ConversableAgent to throw ValueError."
except ValueError as e:
assert e.args[0] == "Please specify the value for 'llm_config'."

with pytest.raises(RuntimeError) as e:

@agent.register_for_llm(description="run cell in ipython and return the execution result.")
def exec_python(cell: Annotated[str, "Valid Python cell to execute."]) -> str:
pass
def test_register_for_llm_without_configuration():
try:
ConversableAgent(name="agent", llm_config={"config_list": []})
assert False, "Expected ConversableAgent to throw ValueError."
except ValueError as e:
assert e.args[0] == "Please specify a value for the 'model' in 'llm_config'."


assert e.value.args[0] == "LLM config must be setup before registering a function for LLM."
def test_register_for_llm_without_model_name():
try:
ConversableAgent(name="agent", llm_config={"config_list": [{"model": "", "api_key": ""}]})
assert False, "Expected ConversableAgent to throw ValueError."
except ValueError as e:
assert e.args[0] == "Please specify a non-empty 'model' value for every item in 'config_list'."


def test_register_for_execution():
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", MOCK_OPEN_AI_API_KEY)
agent = ConversableAgent(name="agent", llm_config={"config_list": []})
agent = ConversableAgent(name="agent", llm_config={"config_list": [{"model": "gpt-4", "api_key": ""}]})
user_proxy_1 = UserProxyAgent(name="user_proxy_1")
user_proxy_2 = UserProxyAgent(name="user_proxy_2")

Expand Down Expand Up @@ -827,7 +835,7 @@ async def exec_sh(script: Annotated[str, "Valid shell script to execute."]):
def test_register_functions():
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", MOCK_OPEN_AI_API_KEY)
agent = ConversableAgent(name="agent", llm_config={"config_list": []})
agent = ConversableAgent(name="agent", llm_config={"config_list": [{"model": "gpt-4", "api_key": ""}]})
user_proxy = UserProxyAgent(name="user_proxy")

def exec_python(cell: Annotated[str, "Valid Python cell to execute."]) -> str:
Expand Down

0 comments on commit d677b47

Please sign in to comment.