Skip to content

Commit

Permalink
Update Mistral client class to support new Mistral v1.0.1 package (#3356
Browse files Browse the repository at this point in the history
)

* Update Mistral client class to support new Mistral v1.0.1 package

* Remove comments

* Refactored assistant/system role order, tidied imports and comments

---------

Co-authored-by: HRUSHIKESH DOKALA <[email protected]>
  • Loading branch information
2 people authored and victordibia committed Aug 28, 2024
1 parent e1bdf21 commit 829758f
Show file tree
Hide file tree
Showing 3 changed files with 106 additions and 52 deletions.
128 changes: 87 additions & 41 deletions autogen/oai/mistral.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,28 +15,32 @@
Resources:
- https://docs.mistral.ai/getting-started/quickstart/
"""
# Important notes when using the Mistral.AI API:
# The first system message can greatly affect whether the model returns a tool call, including text that references the ability to use functions will help.
# Changing the role on the first system message to 'user' improved the chances of the model recommending a tool call.
NOTE: Requires mistralai package version >= 1.0.1
"""

import inspect
import json
import os
import time
import warnings
from typing import Any, Dict, List, Tuple, Union
from typing import Any, Dict, List, Union

# Mistral libraries
# pip install mistralai
from mistralai.client import MistralClient
from mistralai.exceptions import MistralAPIException
from mistralai.models.chat_completion import ChatCompletionResponse, ChatMessage, ToolCall
from mistralai import (
AssistantMessage,
Function,
FunctionCall,
Mistral,
SystemMessage,
ToolCall,
ToolMessage,
UserMessage,
)
from openai.types.chat import ChatCompletion, ChatCompletionMessageToolCall
from openai.types.chat.chat_completion import ChatCompletionMessage, Choice
from openai.types.completion_usage import CompletionUsage
from typing_extensions import Annotated

from autogen.oai.client_utils import should_hide_tools, validate_parameter

Expand All @@ -50,6 +54,7 @@ def __init__(self, **kwargs):
Args:
api_key (str): The API key for using Mistral.AI (or environment variable MISTRAL_API_KEY needs to be set)
"""

# Ensure we have the api_key upon instantiation
self.api_key = kwargs.get("api_key", None)
if not self.api_key:
Expand All @@ -59,7 +64,9 @@ def __init__(self, **kwargs):
self.api_key
), "Please specify the 'api_key' in your config list entry for Mistral or set the MISTRAL_API_KEY env variable."

def message_retrieval(self, response: ChatCompletionResponse) -> Union[List[str], List[ChatCompletionMessage]]:
self._client = Mistral(api_key=self.api_key)

def message_retrieval(self, response: ChatCompletion) -> Union[List[str], List[ChatCompletionMessage]]:
"""Retrieve the messages from the response."""

return [choice.message for choice in response.choices]
Expand All @@ -86,34 +93,52 @@ def parse_params(self, params: Dict[str, Any]) -> Dict[str, Any]:
)
mistral_params["random_seed"] = validate_parameter(params, "random_seed", int, True, None, False, None)

# TODO
if params.get("stream", False):
warnings.warn(
"Streaming is not currently supported, streaming will be disabled.",
UserWarning,
)

# 3. Convert messages to Mistral format
mistral_messages = []
tool_call_ids = {} # tool call ids to function name mapping
for message in params["messages"]:
if message["role"] == "assistant" and "tool_calls" in message and message["tool_calls"] is not None:
# Convert OAI ToolCall to Mistral ToolCall
openai_toolcalls = message["tool_calls"]
mistral_toolcalls = []
for toolcall in openai_toolcalls:
mistral_toolcall = ToolCall(id=toolcall["id"], function=toolcall["function"])
mistral_toolcalls.append(mistral_toolcall)
mistral_messages.append(
ChatMessage(role=message["role"], content=message["content"], tool_calls=mistral_toolcalls)
)
mistral_messages_tools = []
for toolcall in message["tool_calls"]:
mistral_messages_tools.append(
ToolCall(
id=toolcall["id"],
function=FunctionCall(
name=toolcall["function"]["name"],
arguments=json.loads(toolcall["function"]["arguments"]),
),
)
)

mistral_messages.append(AssistantMessage(content="", tool_calls=mistral_messages_tools))

# Map tool call id to the function name
for tool_call in message["tool_calls"]:
tool_call_ids[tool_call["id"]] = tool_call["function"]["name"]

elif message["role"] in ("system", "user", "assistant"):
# Note this ChatMessage can take a 'name' but it is rejected by the Mistral API if not role=tool, so, no, the 'name' field is not used.
mistral_messages.append(ChatMessage(role=message["role"], content=message["content"]))
elif message["role"] == "system":
if len(mistral_messages) > 0 and mistral_messages[-1].role == "assistant":
# System messages can't appear after an Assistant message, so use a UserMessage
mistral_messages.append(UserMessage(content=message["content"]))
else:
mistral_messages.append(SystemMessage(content=message["content"]))
elif message["role"] == "assistant":
mistral_messages.append(AssistantMessage(content=message["content"]))
elif message["role"] == "user":
mistral_messages.append(UserMessage(content=message["content"]))

elif message["role"] == "tool":
# Indicates the result of a tool call, the name is the function name called
mistral_messages.append(
ChatMessage(
role="tool",
ToolMessage(
name=tool_call_ids[message["tool_call_id"]],
content=message["content"],
tool_call_id=message["tool_call_id"],
Expand All @@ -122,30 +147,28 @@ def parse_params(self, params: Dict[str, Any]) -> Dict[str, Any]:
else:
warnings.warn(f"Unknown message role {message['role']}", UserWarning)

# If a 'system' message follows an 'assistant' message, change it to 'user'
# This can occur when using LLM summarisation
for i in range(1, len(mistral_messages)):
if mistral_messages[i - 1].role == "assistant" and mistral_messages[i].role == "system":
mistral_messages[i].role = "user"
# 4. Last message needs to be user or tool, if not, add a "please continue" message
if not isinstance(mistral_messages[-1], UserMessage) and not isinstance(mistral_messages[-1], ToolMessage):
mistral_messages.append(UserMessage(content="Please continue."))

mistral_params["messages"] = mistral_messages

# 4. Add tools to the call if we have them and aren't hiding them
# 5. Add tools to the call if we have them and aren't hiding them
if "tools" in params:
hide_tools = validate_parameter(
params, "hide_tools", str, False, "never", None, ["if_all_run", "if_any_run", "never"]
)
if not should_hide_tools(params["messages"], params["tools"], hide_tools):
mistral_params["tools"] = params["tools"]
mistral_params["tools"] = tool_def_to_mistral(params["tools"])

return mistral_params

def create(self, params: Dict[str, Any]) -> ChatCompletion:
# 1. Parse parameters to Mistral.AI API's parameters
mistral_params = self.parse_params(params)

# 2. Call Mistral.AI API
client = MistralClient(api_key=self.api_key)
mistral_response = client.chat(**mistral_params)
mistral_response = self._client.chat.complete(**mistral_params)
# TODO: Handle streaming

# 3. Convert Mistral response to OAI compatible format
Expand Down Expand Up @@ -191,7 +214,7 @@ def create(self, params: Dict[str, Any]) -> ChatCompletion:
return response_oai

@staticmethod
def get_usage(response: ChatCompletionResponse) -> Dict:
def get_usage(response: ChatCompletion) -> Dict:
return {
"prompt_tokens": response.usage.prompt_tokens if response.usage is not None else 0,
"completion_tokens": response.usage.completion_tokens if response.usage is not None else 0,
Expand All @@ -203,25 +226,48 @@ def get_usage(response: ChatCompletionResponse) -> Dict:
}


def tool_def_to_mistral(tool_definitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Converts AutoGen tool definition to a mistral tool format"""

mistral_tools = []

for autogen_tool in tool_definitions:
mistral_tool = {
"type": "function",
"function": Function(
name=autogen_tool["function"]["name"],
description=autogen_tool["function"]["description"],
parameters=autogen_tool["function"]["parameters"],
),
}

mistral_tools.append(mistral_tool)

return mistral_tools


def calculate_mistral_cost(input_tokens: int, output_tokens: int, model_name: str) -> float:
"""Calculate the cost of the mistral response."""

# Prices per 1 million tokens
# Prices per 1 thousand tokens
# https://mistral.ai/technology/
model_cost_map = {
"open-mistral-7b": {"input": 0.25, "output": 0.25},
"open-mixtral-8x7b": {"input": 0.7, "output": 0.7},
"open-mixtral-8x22b": {"input": 2.0, "output": 6.0},
"mistral-small-latest": {"input": 1.0, "output": 3.0},
"mistral-medium-latest": {"input": 2.7, "output": 8.1},
"mistral-large-latest": {"input": 4.0, "output": 12.0},
"open-mistral-7b": {"input": 0.00025, "output": 0.00025},
"open-mixtral-8x7b": {"input": 0.0007, "output": 0.0007},
"open-mixtral-8x22b": {"input": 0.002, "output": 0.006},
"mistral-small-latest": {"input": 0.001, "output": 0.003},
"mistral-medium-latest": {"input": 0.00275, "output": 0.0081},
"mistral-large-latest": {"input": 0.0003, "output": 0.0003},
"mistral-large-2407": {"input": 0.0003, "output": 0.0003},
"open-mistral-nemo-2407": {"input": 0.0003, "output": 0.0003},
"codestral-2405": {"input": 0.001, "output": 0.003},
}

# Ensure we have the model they are using and return the total cost
if model_name in model_cost_map:
costs = model_cost_map[model_name]

return (input_tokens * costs["input"] / 1_000_000) + (output_tokens * costs["output"] / 1_000_000)
return (input_tokens * costs["input"] / 1000) + (output_tokens * costs["output"] / 1000)
else:
warnings.warn(f"Cost calculation is not implemented for model {model_name}, will return $0.", UserWarning)
return 0
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@
"types": ["mypy==1.9.0", "pytest>=6.1.1,<8"] + jupyter_executor,
"long-context": ["llmlingua<0.3"],
"anthropic": ["anthropic>=0.23.1"],
"mistral": ["mistralai>=0.2.0"],
"mistral": ["mistralai>=1.0.1"],
"groq": ["groq>=0.9.0"],
"cohere": ["cohere>=5.5.8"],
}
Expand Down
28 changes: 18 additions & 10 deletions test/oai/test_mistral.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,16 @@
import pytest

try:
from mistralai.models.chat_completion import ChatMessage
from mistralai import (
AssistantMessage,
Function,
FunctionCall,
Mistral,
SystemMessage,
ToolCall,
ToolMessage,
UserMessage,
)

from autogen.oai.mistral import MistralAIClient, calculate_mistral_cost

Expand Down Expand Up @@ -66,17 +75,16 @@ def test_cost_calculation(mock_response):
cost=None,
model="mistral-large-latest",
)
assert (
calculate_mistral_cost(response.usage["prompt_tokens"], response.usage["completion_tokens"], response.model)
== 0.0001
), "Cost for this should be $0.0001"
assert calculate_mistral_cost(
response.usage["prompt_tokens"], response.usage["completion_tokens"], response.model
) == (15 / 1000 * 0.0003), "Cost for this should be $0.0000045"


# Test text generation
@pytest.mark.skipif(skip, reason="Mistral.AI dependency is not installed")
@patch("autogen.oai.mistral.MistralClient.chat")
@patch("autogen.oai.mistral.MistralAIClient.create")
def test_create_response(mock_chat, mistral_client):
# Mock MistralClient.chat response
# Mock `mistral_response = client.chat.complete(**mistral_params)`
mock_mistral_response = MagicMock()
mock_mistral_response.choices = [
MagicMock(finish_reason="stop", message=MagicMock(content="Example Mistral response", tool_calls=None))
Expand Down Expand Up @@ -108,9 +116,9 @@ def test_create_response(mock_chat, mistral_client):

# Test functions/tools
@pytest.mark.skipif(skip, reason="Mistral.AI dependency is not installed")
@patch("autogen.oai.mistral.MistralClient.chat")
@patch("autogen.oai.mistral.MistralAIClient.create")
def test_create_response_with_tool_call(mock_chat, mistral_client):
# Mock `mistral_response = client.chat(**mistral_params)`
# Mock `mistral_response = client.chat.complete(**mistral_params)`
mock_function = MagicMock(name="currency_calculator")
mock_function.name = "currency_calculator"
mock_function.arguments = '{"base_currency": "EUR", "quote_currency": "USD", "base_amount": 123.45}'
Expand Down Expand Up @@ -159,7 +167,7 @@ def test_create_response_with_tool_call(mock_chat, mistral_client):
{"role": "assistant", "content": "World"},
]

# Call the create method
# Call the chat method
response = mistral_client.create(
{"messages": mistral_messages, "tools": converted_functions, "model": "mistral-medium-latest"}
)
Expand Down

0 comments on commit 829758f

Please sign in to comment.