Skip to content

Commit

Permalink
Anthropic Client (#2931)
Browse files Browse the repository at this point in the history
* intial setup for the anthropic client with cost config

* update: other methods added

* fix: formatting

* fix: config unused

* update: changes made in the client

* update: test added to the workflow

* update: added tests to the anthropic client

* fix: errors in workflows and client

* fix

* fix: anthropic tools type

* update: notebook anthropic

* Nonetype fixed

* fix-tests config

* update: tests and client issues

* logger support

* remove sys path

* updated the functioning of the client

* update: type hints and stream

* skip tests- importerror

* fix: anthropic client and tests

* none fix

* Alternating roles, parameter keywords, cost on response,

* update: anthropic notebook

* update: notebook with more details

* devcontainer

* update: added validate_params from the client_utils

* fix: formatting

* fix: minor comment

---------

Co-authored-by: Mark Sze <[email protected]>
  • Loading branch information
2 people authored and victordibia committed Jul 30, 2024
1 parent 8d2cfaf commit 5a496b3
Show file tree
Hide file tree
Showing 10 changed files with 541 additions and 346 deletions.
43 changes: 43 additions & 0 deletions .github/workflows/contrib-tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -475,3 +475,46 @@ jobs:
with:
file: ./coverage.xml
flags: unittests


AnthropicTest:
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: ["ubuntu-latest", "windows-latest", "macos-latest"]
python-version: ["3.9", "3.10", "3.11", "3.12"]

steps:
- uses: actions/checkout@v4
with:
lfs: true
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install packages and dependencies for all tests
run: |
python -m pip install --upgrade pip wheel
pip install pytest-cov>=5
- name: Install packages and dependencies for Anthropic
run: |
pip install -e .[test]
pip install -e .[anthropic]
- name: Set AUTOGEN_USE_DOCKER based on OS
shell: bash
run: |
if [[ ${{ matrix.os }} != ubuntu-latest ]]; then
echo "AUTOGEN_USE_DOCKER=False" >> $GITHUB_ENV
fi
- name: Coverage
run: |
pytest test/oai/test_anthropic.py --skip-openai
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
with:
file: ./coverage.xml
flags: unittests
6 changes: 5 additions & 1 deletion autogen/logger/file_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@

if TYPE_CHECKING:
from autogen import Agent, ConversableAgent, OpenAIWrapper
from autogen.oai.anthropic import AnthropicClient
from autogen.oai.gemini import GeminiClient

logger = logging.getLogger(__name__)
Expand Down Expand Up @@ -200,7 +201,10 @@ def log_new_wrapper(
self.logger.error(f"[file_logger] Failed to log event {e}")

def log_new_client(
self, client: AzureOpenAI | OpenAI | GeminiClient, wrapper: OpenAIWrapper, init_args: Dict[str, Any]
self,
client: AzureOpenAI | OpenAI | GeminiClient | AnthropicClient,
wrapper: OpenAIWrapper,
init_args: Dict[str, Any],
) -> None:
"""
Log a new client instance.
Expand Down
6 changes: 5 additions & 1 deletion autogen/logger/sqlite_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

if TYPE_CHECKING:
from autogen import Agent, ConversableAgent, OpenAIWrapper
from autogen.oai.anthropic import AnthropicClient
from autogen.oai.gemini import GeminiClient

logger = logging.getLogger(__name__)
Expand Down Expand Up @@ -387,7 +388,10 @@ def log_function_use(self, source: Union[str, Agent], function: F, args: Dict[st
self._run_query(query=query, args=query_args)

def log_new_client(
self, client: Union[AzureOpenAI, OpenAI, GeminiClient], wrapper: OpenAIWrapper, init_args: Dict[str, Any]
self,
client: Union[AzureOpenAI, OpenAI, GeminiClient, AnthropicClient],
wrapper: OpenAIWrapper,
init_args: Dict[str, Any],
) -> None:
if self.con is None:
return
Expand Down
274 changes: 274 additions & 0 deletions autogen/oai/anthropic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,274 @@
"""
Create an OpenAI-compatible client for the Anthropic API.
Example usage:
Install the `anthropic` package by running `pip install --upgrade anthropic`.
- https://docs.anthropic.com/en/docs/quickstart-guide
import autogen
config_list = [
{
"model": "claude-3-sonnet-20240229",
"api_key": os.getenv("ANTHROPIC_API_KEY"),
"api_type": "anthropic",
}
]
assistant = autogen.AssistantAgent("assistant", llm_config={"config_list": config_list})
"""

from __future__ import annotations

import copy
import inspect
import json
import os
import warnings
from typing import Any, Dict, List, Tuple, Union

from anthropic import Anthropic
from anthropic import __version__ as anthropic_version
from anthropic.types import Completion, Message
from client_utils import validate_parameter
from openai.types.chat import ChatCompletion, ChatCompletionMessageToolCall
from openai.types.chat.chat_completion import ChatCompletionMessage, Choice
from typing_extensions import Annotated

TOOL_ENABLED = anthropic_version >= "0.23.1"
if TOOL_ENABLED:
from anthropic.types.tool_use_block_param import (
ToolUseBlockParam,
)


ANTHROPIC_PRICING_1k = {
"claude-3-sonnet-20240229": (0.003, 0.015),
"claude-3-opus-20240229": (0.015, 0.075),
"claude-2.0": (0.008, 0.024),
"claude-2.1": (0.008, 0.024),
"claude-3.0-opus": (0.015, 0.075),
"claude-3.0-haiku": (0.00025, 0.00125),
}


class AnthropicClient:
def __init__(self, **kwargs: Any):
"""
Initialize the Anthropic API client.
Args:
api_key (str): The API key for the Anthropic API or set the `ANTHROPIC_API_KEY` environment variable.
"""
self._api_key = kwargs.get("api_key", None)

if not self._api_key:
self._api_key = os.getenv("ANTHROPIC_API_KEY")

if self._api_key is None:
raise ValueError("API key is required to use the Anthropic API.")

self._client = Anthropic(api_key=self._api_key)
self._last_tooluse_status = {}

def load_config(self, params: Dict[str, Any]):
"""Load the configuration for the Anthropic API client."""
anthropic_params = {}

anthropic_params["model"] = params.get("model", None)
assert anthropic_params["model"], "Please provide a `model` in the config_list to use the Anthropic API."

anthropic_params["temperature"] = validate_parameter(
params, "temperature", (float, int), False, 1.0, (0.0, 1.0), None
)
anthropic_params["max_tokens"] = validate_parameter(params, "max_tokens", int, False, 4096, (1, None), None)
anthropic_params["top_k"] = validate_parameter(params, "top_k", int, True, None, (1, None), None)
anthropic_params["top_p"] = validate_parameter(params, "top_p", (float, int), True, None, (0.0, 1.0), None)
anthropic_params["stop_sequences"] = validate_parameter(params, "stop_sequences", list, True, None, None, None)
anthropic_params["stream"] = validate_parameter(params, "stream", bool, False, False, None, None)

if anthropic_params["stream"]:
warnings.warn(
"Streaming is not currently supported, streaming will be disabled.",
UserWarning,
)
anthropic_params["stream"] = False

return anthropic_params

def cost(self, response) -> float:
"""Calculate the cost of the completion using the Anthropic pricing."""
return response.cost

@property
def api_key(self):
return self._api_key

def create(self, params: Dict[str, Any]) -> Completion:
"""Create a completion for a given config.
Args:
params: The params for the completion.
Returns:
The completion.
"""
if "tools" in params:
converted_functions = self.convert_tools_to_functions(params["tools"])
params["functions"] = params.get("functions", []) + converted_functions

raw_contents = params["messages"]
anthropic_params = self.load_config(params)

processed_messages = []
for message in raw_contents:

if message["role"] == "system":
params["system"] = message["content"]
elif message["role"] == "function":
processed_messages.append(self.return_function_call_result(message["content"]))
elif "function_call" in message:
processed_messages.append(self.restore_last_tooluse_status())
elif message["content"] == "":
message["content"] = "I'm done. Please send TERMINATE" # Not sure about this one.
processed_messages.append(message)
else:
processed_messages.append(message)

# Check for interleaving roles and correct, for Anthropic must be: user, assistant, user, etc.
for i, message in enumerate(processed_messages):
if message["role"] is not ("user" if i % 2 == 0 else "assistant"):
message["role"] = "user" if i % 2 == 0 else "assistant"

# Note: When using reflection_with_llm we may end up with an "assistant" message as the last message
if processed_messages[-1]["role"] != "user":
# If the last role is not user, add a continue message at the end
continue_message = {"content": "continue", "role": "user"}
processed_messages.append(continue_message)

params["messages"] = processed_messages

# TODO: support stream
params = params.copy()
if "functions" in params:
tools_configs = params.pop("functions")
tools_configs = [self.openai_func_to_anthropic(tool) for tool in tools_configs]
params["tools"] = tools_configs

# Anthropic doesn't accept None values, so we need to use keyword argument unpacking instead of setting parameters.
# Copy params we need into anthropic_params
# Remove any that don't have values
anthropic_params["messages"] = params["messages"]
if "system" in params:
anthropic_params["system"] = params["system"]
if "tools" in params:
anthropic_params["tools"] = params["tools"]
if anthropic_params["top_k"] is None:
del anthropic_params["top_k"]
if anthropic_params["top_p"] is None:
del anthropic_params["top_p"]
if anthropic_params["stop_sequences"] is None:
del anthropic_params["stop_sequences"]

response = self._client.messages.create(**anthropic_params)

# Calculate and save the cost onto the response
prompt_tokens = response.usage.input_tokens
completion_tokens = response.usage.output_tokens
response.cost = _calculate_cost(prompt_tokens, completion_tokens, anthropic_params["model"])

return response

def message_retrieval(self, response: Union[Message]) -> Union[List[str], List[ChatCompletionMessage]]:
"""Retrieve the messages from the response."""
messages = response.content
if len(messages) == 0:
return [None]
res = []
if TOOL_ENABLED:
for choice in messages:
if choice.type == "tool_use":
res.insert(0, self.response_to_openai_message(choice))
self._last_tooluse_status["tool_use"] = choice.model_dump()
else:
res.append(choice.text)
self._last_tooluse_status["think"] = choice.text

return res

else:
return [ # type: ignore [return-value]
choice.text if choice.message.function_call is not None else choice.message.content # type: ignore [union-attr]
for choice in messages
]

def response_to_openai_message(self, response) -> ChatCompletionMessage:
"""Convert the client response to OpenAI ChatCompletion Message"""
dict_response = response.model_dump()
return ChatCompletionMessage(
content=None,
role="assistant",
function_call={"name": dict_response["name"], "arguments": json.dumps(dict_response["input"])},
)

def restore_last_tooluse_status(self) -> Dict:
cached_content = []
if "think" in self._last_tooluse_status:
cached_content.append({"type": "text", "text": self._last_tooluse_status["think"]})
cached_content.append(self._last_tooluse_status["tool_use"])
res = {"role": "assistant", "content": cached_content}
return res

def return_function_call_result(self, result: str) -> Dict:
return {
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": self._last_tooluse_status["tool_use"]["id"],
"content": result,
}
],
}

@staticmethod
def openai_func_to_anthropic(openai_func: dict) -> dict:
res = openai_func.copy()
res["input_schema"] = res.pop("parameters")
return res

@staticmethod
def get_usage(response: Message) -> Dict:
"""Get the usage of tokens and their cost information."""
return {
"prompt_tokens": response.usage.input_tokens if response.usage is not None else 0,
"completion_tokens": response.usage.output_tokens if response.usage is not None else 0,
"total_tokens": (
response.usage.input_tokens + response.usage.output_tokens if response.usage is not None else 0
),
"cost": response.cost if hasattr(response, "cost") else 0.0,
"model": response.model,
}

@staticmethod
def convert_tools_to_functions(tools: List) -> List:
functions = []
for tool in tools:
if tool.get("type") == "function" and "function" in tool:
functions.append(tool["function"])

return functions


def _calculate_cost(input_tokens: int, output_tokens: int, model: str) -> float:
"""Calculate the cost of the completion using the Anthropic pricing."""
total = 0.0

if model in ANTHROPIC_PRICING_1k:
input_cost_per_1k, output_cost_per_1k = ANTHROPIC_PRICING_1k[model]
input_cost = (input_tokens / 1000) * input_cost_per_1k
output_cost = (output_tokens / 1000) * output_cost_per_1k
total = input_cost + output_cost
else:
warnings.warn(f"Cost calculation not available for model {model}", UserWarning)

return total
12 changes: 12 additions & 0 deletions autogen/oai/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,13 @@
except ImportError as e:
gemini_import_exception = e

try:
from autogen.oai.anthropic import AnthropicClient

anthropic_import_exception: Optional[ImportError] = None
except ImportError as e:
anthropic_import_exception = e

logger = logging.getLogger(__name__)
if not logger.handlers:
# Add the console handler.
Expand Down Expand Up @@ -449,6 +456,11 @@ def _register_default_client(self, config: Dict[str, Any], openai_config: Dict[s
raise ImportError("Please install `google-generativeai` to use Google OpenAI API.")
client = GeminiClient(**openai_config)
self._clients.append(client)
elif api_type is not None and api_type.startswith("anthropic"):
if anthropic_import_exception:
raise ImportError("Please install `anthropic` to use Anthropic API.")
client = AnthropicClient(**openai_config)
self._clients.append(client)
else:
client = OpenAI(**openai_config)
self._clients.append(OpenAIClient(client))
Expand Down
Loading

0 comments on commit 5a496b3

Please sign in to comment.