Skip to content
This repository was archived by the owner on Nov 16, 2023. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 101 additions & 0 deletions docs/release-notes/release-1.5.0.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# [NimbusML](https://docs.microsoft.com/en-us/nimbusml/overview) 1.5.0

## **New Features**

- **Initial implementation of `csr_matrix` output support.**

[PR#250](https://github.com/microsoft/NimbusML/pull/250)
Add support for data output in `scipy.sparse.csr_matrix` format.

```python
xf = OneHotVectorizer(columns={'c0':'c0', 'c1':'c1'})
xf.fit(train_df)
result = xf.transform(train_df, as_csr=True)
```

- **Permutation Feature Importance for model interpretibility.**

[PR#279](https://github.com/microsoft/NimbusML/pull/279)
Adds `permutation_feature_importance()` method to `Pipeline` and
predictor estimators, enabling evaluation of model-wide feature
importances on any dataset with same schema as the dataset used
to fit the `Pipeline`.

```python
pipe = Pipeline([
LogisticRegressionBinaryClassifier(label='label', feature=['feature'])
])
pipe.fit(data)
pipe.permutation_feature_importance(data)
```

- **Initial implementation of DateTime input and output column support.**

[PR#290](https://github.com/microsoft/NimbusML/pull/290)
Add initial support for input and output of Pandas DateTime columns.

- **Initial implementation of LpScaler.**

[PR#253](https://github.com/microsoft/NimbusML/pull/253)
Normalize vectors (rows) individually by rescaling them to unit norm (L2, L1 or LInf).
Performs the following operation on a vector X: Y = (X - M) / D, where M is mean and D
is either L2 norm, L1 norm or LInf norm.

- **Add support for variable length vector output.**

[PR#267](https://github.com/microsoft/NimbusML/pull/267)
Support output of columns returned from ML.Net which contain variable length vectors.

- **Save `predictor_model` when pickling a `Pipeline`.**

[PR#295](https://github.com/microsoft/NimbusML/pull/295)

- **Initial implementation of the WordTokenizer transform.**

[PR#296](https://github.com/microsoft/NimbusML/pull/296)

- **Add support for summary output from tree based predictors.**

[PR#298](https://github.com/microsoft/NimbusML/pull/298)

## **Bug Fixes**

- **Fixed `Pipeline.transform()` in transform only `Pipeline` fails if y column is provided **

[PR#294](https://github.com/microsoft/NimbusML/pull/294)
Enable calling `.transform()` on a `Pipeline` containing only transforms when the y column is provided

- **Fix issue when using `predict_proba` or `decision_function` with combined models.**

[PR#272](https://github.com/microsoft/NimbusML/pull/272)

- **Fix `Pipeline._extract_classes_from_headers` was not checking for valid steps.**

[PR#292](https://github.com/microsoft/NimbusML/pull/292)

- **Fix BinaryDataStream was not valid as input for transformer.**

[PR#307](https://github.com/microsoft/NimbusML/pull/307)

- **Fix casing for the installPythonPackages build.sh argument.**

[PR#256](https://github.com/microsoft/NimbusML/pull/256)

## **Breaking Changes**

- **Removed `y` parameter from `Pipeline.transform()`**

[PR#294](https://github.com/microsoft/NimbusML/pull/294)
Removed `y` parameter from `Pipeline.transform()` as it is not needed nor used for transforming data with a fitted `Pipeline`.

## **Enhancements**

None.

## **Documentation and Samples**

None.

## **Remarks**

None.
84 changes: 2 additions & 82 deletions release-next.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,91 +2,11 @@

## **New Features**

- **Initial implementation of `csr_matrix` output support.**

[PR#250](https://github.com/microsoft/NimbusML/pull/250)
Add support for data output in `scipy.sparse.csr_matrix` format.

```python
xf = OneHotVectorizer(columns={'c0':'c0', 'c1':'c1'})
xf.fit(train_df)
result = xf.transform(train_df, as_csr=True)
```

- **Permutation Feature Importance for model interpretibility.**

[PR#279](https://github.com/microsoft/NimbusML/pull/279)
Adds `permutation_feature_importance()` method to `Pipeline` and
predictor estimators, enabling evaluation of model-wide feature
importances on any dataset with same schema as the dataset used
to fit the `Pipeline`.

```python
pipe = Pipeline([
LogisticRegressionBinaryClassifier(label='label', feature=['feature'])
])
pipe.fit(data)
pipe.permutation_feature_importance(data)
```

- **Initial implementation of DateTime input and output column support.**

[PR#290](https://github.com/microsoft/NimbusML/pull/290)
Add initial support for input and output of Pandas DateTime columns.

- **Initial implementation of LpScaler.**

[PR#253](https://github.com/microsoft/NimbusML/pull/253)
Normalize vectors (rows) individually by rescaling them to unit norm (L2, L1 or LInf).
Performs the following operation on a vector X: Y = (X - M) / D, where M is mean and D
is either L2 norm, L1 norm or LInf norm.

- **Add support for variable length vector output.**

[PR#267](https://github.com/microsoft/NimbusML/pull/267)
Support output of columns returned from ML.Net which contain variable length vectors.

- **Save `predictor_model` when pickling a `Pipeline`.**

[PR#295](https://github.com/microsoft/NimbusML/pull/295)

- **Initial implementation of the WordTokenizer transform.**

[PR#296](https://github.com/microsoft/NimbusML/pull/296)

- **Add support for summary output from tree based predictors.**

[PR#298](https://github.com/microsoft/NimbusML/pull/298)
None.

## **Bug Fixes**

- **Fixed `Pipeline.transform()` in transform only `Pipeline` fails if y column is provided **

[PR#294](https://github.com/microsoft/NimbusML/pull/294)
Enable calling `.transform()` on a `Pipeline` containing only transforms when the y column is provided

- **Fix issue when using `predict_proba` or `decision_function` with combined models.**

[PR#272](https://github.com/microsoft/NimbusML/pull/272)

- **Fix `Pipeline._extract_classes_from_headers` was not checking for valid steps.**

[PR#292](https://github.com/microsoft/NimbusML/pull/292)

- **Fix BinaryDataStream was not valid as input for transformer.**

[PR#307](https://github.com/microsoft/NimbusML/pull/307)

- **Fix casing for the installPythonPackages build.sh argument.**

[PR#256](https://github.com/microsoft/NimbusML/pull/256)

## **Breaking Changes**

- **Removed `y` parameter from `Pipeline.transform()`**

[PR#294](https://github.com/microsoft/NimbusML/pull/294)
Removed `y` parameter from `Pipeline.transform()` as it is not needed nor used for transforming data with a fitted `Pipeline`.
None.

## **Enhancements**

Expand Down