This repository was archived by the owner on Jan 26, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 223
PyTorch binding with mnist examples #148
Open
zhengsx
wants to merge
17
commits into
microsoft:master
Choose a base branch
from
zhengsx:master
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 10 commits
Commits
Show all changes
17 commits
Select commit
Hold shift + click to select a range
5fe734c
Merge pull request #1 from Microsoft/master
zhengsx 375a2f5
update .gitignore
bf7ae22
dist mnist
a764c42
add dcasgd submodule
0040e7b
cmake
a8bf835
nothing
935912d
test example
648283a
update .gitignore
5f3c4ad
update submodule
6b9011d
update gitmodules
5cd84f0
fix bug
e71203e
fix bugs and support updater
e0e494c
update
d46cd3d
update submodule
89a0027
Merge pull request #2 from Microsoft/master
zhengsx 96d36c7
add getstate func
e0b0ea2
Merge branch 'master' of https://github.com/zhengsx/multiverso
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -270,3 +270,5 @@ _Pvt_Extensions | |
|
||
# Python | ||
*.pyc | ||
*.egg | ||
binding/python/multiverso_python.egg-info/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
from __future__ import print_function | ||
import argparse | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
from torchvision import datasets, transforms | ||
from torch.autograd import Variable | ||
|
||
import numpy as np | ||
import multiverso as mv | ||
from multiverso.torch_ext import torchmodel | ||
|
||
mv.init(sync=True, updater='sgd') | ||
|
||
# Training settings | ||
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | ||
parser.add_argument('--batch-size', type=int, default=64, metavar='N', | ||
help='input batch size for training (default: 64)') | ||
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | ||
help='input batch size for testing (default: 1000)') | ||
parser.add_argument('--epochs', type=int, default=10, metavar='N', | ||
help='number of epochs to train (default: 10)') | ||
parser.add_argument('--lr', type=float, default=0.01, metavar='LR', | ||
help='learning rate (default: 0.01)') | ||
parser.add_argument('--momentum', type=float, default=0, metavar='M', | ||
help='SGD momentum (default: 0)') | ||
parser.add_argument('--no-cuda', action='store_true', default=False, | ||
help='disables CUDA training') | ||
parser.add_argument('--seed', type=int, default=1, metavar='S', | ||
help='random seed (default: 1)') | ||
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | ||
help='how many batches to wait before logging training status') | ||
args = parser.parse_args() | ||
args.cuda = not args.no_cuda and torch.cuda.is_available() | ||
|
||
torch.manual_seed(args.seed) | ||
if args.cuda: | ||
torch.cuda.manual_seed(args.seed) | ||
|
||
|
||
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} | ||
train_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST('../data', train=True, download=True, | ||
transform=transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
])), | ||
batch_size=args.batch_size, shuffle=True, **kwargs) | ||
test_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST('../data', train=False, transform=transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
])), | ||
batch_size=args.batch_size, shuffle=True, **kwargs) | ||
|
||
|
||
class Net(nn.Module): | ||
def __init__(self): | ||
super(Net, self).__init__() | ||
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | ||
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | ||
self.conv2_drop = nn.Dropout2d() | ||
self.fc1 = nn.Linear(320, 50) | ||
self.fc2 = nn.Linear(50, 10) | ||
|
||
def forward(self, x): | ||
x = F.relu(F.max_pool2d(self.conv1(x), 2)) | ||
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) | ||
x = x.view(-1, 320) | ||
x = F.relu(self.fc1(x)) | ||
x = F.dropout(x, training=self.training) | ||
x = self.fc2(x) | ||
return F.log_softmax(x) | ||
|
||
model = torchmodel.MVTorchModel(Net()) | ||
|
||
if args.cuda: | ||
model.cuda() | ||
|
||
optimizer = optim.SGD(model.parameters(), lr=args.lr * mv.workers_num(), momentum=args.momentum) | ||
|
||
def train(epoch): | ||
model.train() | ||
for batch_idx, (data, target) in enumerate(train_loader): | ||
if batch_idx % mv.workers_num() == mv.worker_id(): | ||
if args.cuda: | ||
data, target = data.cuda(), target.cuda() | ||
data, target = Variable(data), Variable(target) | ||
optimizer.zero_grad() | ||
output = model(data) | ||
loss = F.nll_loss(output, target) | ||
loss.backward() | ||
optimizer.step() | ||
|
||
model.cpu() | ||
model.mv_sync() | ||
model.cuda() | ||
|
||
if (batch_idx/mv.workers_num()) % args.log_interval == 0: | ||
print('Worker: {}\tTrain Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | ||
mv.worker_id(), epoch, batch_idx * len(data), len(train_loader.dataset), | ||
100. * batch_idx / len(train_loader), loss.data[0])) | ||
|
||
def test(epoch): | ||
model.eval() | ||
test_loss = 0 | ||
correct = 0 | ||
for data, target in test_loader: | ||
if args.cuda: | ||
data, target = data.cuda(), target.cuda() | ||
data, target = Variable(data, volatile=True), Variable(target) | ||
output = model(data) | ||
test_loss += F.nll_loss(output, target).data[0] | ||
pred = output.data.max(1)[1] # get the index of the max log-probability | ||
correct += pred.eq(target.data).cpu().sum() | ||
|
||
test_loss = test_loss | ||
test_loss /= len(test_loader) # loss function already averages over batch size | ||
print('\nWorker: {}\tTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | ||
mv.worker_id(), test_loss, correct, len(test_loader.dataset), | ||
100. * correct / len(test_loader.dataset))) | ||
|
||
|
||
for epoch in range(1, args.epochs + 1): | ||
train(epoch) | ||
test(epoch) | ||
|
||
mv.shutdown() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
#!/usr/bin/env python | ||
# coding:utf8 | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
from torchvision import datasets, transforms | ||
from torch.autograd import Variable | ||
|
||
import numpy as np | ||
import multiverso as mv | ||
|
||
|
||
class MVTorchModel(object): | ||
def __init__(self, tmobj): | ||
assert(isinstance(tmobj, nn.Module)) | ||
self._tmobj = tmobj | ||
self._mv_params=[] | ||
for param in self._tmobj.parameters(): | ||
self._mv_params.append(mv.ArrayTableHandler(param.data.numpy().size, param.data.numpy().reshape((-1,)))) | ||
mv.barrier() | ||
self._last_mv_params=[] | ||
for mv_param in self._mv_params: | ||
self._last_mv_params.append(mv_param.get()) | ||
for param, last_mv_param in zip(self._tmobj.parameters(), self._last_mv_params): | ||
param=Variable(torch.from_numpy(last_mv_param.reshape(param.data.numpy().shape))) | ||
|
||
def mv_sync(self): | ||
for mv_param, last_mv_param, param in zip(self._mv_params, self._last_mv_params, self._tmobj.parameters()): | ||
mv_param.add(last_mv_param - param.data.numpy().reshape((-1,))) | ||
|
||
for mv_param, last_mv_param, param in zip(self._mv_params, self._last_mv_params, self._tmobj.parameters()): | ||
last_mv_param = mv_param.get() | ||
param=Variable(torch.from_numpy(last_mv_param.reshape(param.data.numpy().shape))) | ||
|
||
def __call__(self, *args, **kwargs): | ||
return self._tmobj(*args, **kwargs) | ||
|
||
def __getattribute__(self, attr): | ||
if attr in ['_tmobj', '_mv_params', '_last_mv_params']: | ||
return object.__getattribute__(self, attr) | ||
elif attr in ['mv_sync', '__call__']: | ||
return getattr(MVTorchModel, attr).__get__(self) | ||
else: | ||
return getattr(self._tmobj, attr) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This should be optional?