Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[python-package] support sub-classing scikit-learn estimators #6783

Open
wants to merge 16 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 39 additions & 0 deletions docs/FAQ.rst
Original file line number Diff line number Diff line change
Expand Up @@ -377,3 +377,42 @@ We strongly recommend installation from the ``conda-forge`` channel and not from
For some specific examples, see `this comment <https://github.com/microsoft/LightGBM/issues/4948#issuecomment-1013766397>`__.

In addition, as of ``lightgbm==4.4.0``, the ``conda-forge`` package automatically supports CUDA-based GPU acceleration.

5. How do I subclass ``scikit-learn`` estimators?
-------------------------------------------------

For ``lightgbm <= 4.5.0``, copy all of the constructor arguments from the corresponding
``lightgbm`` class into the constructor of your custom estimator.

For later versions, just ensure that the constructor of your custom estimator calls ``super().__init__()``.

Consider the example below, which implements a regressor that allows creation of truncated predictions.
This pattern will work with ``lightgbm > 4.5.0``.

.. code-block:: python

import numpy as np
from lightgbm import LGBMRegressor
from sklearn.datasets import make_regression

class TruncatedRegressor(LGBMRegressor):

def __init__(self, **kwargs):
super().__init__(**kwargs)

def predict(self, X, max_score: float = np.inf):
preds = super().predict(X)
np.clip(preds, a_min=None, a_max=max_score, out=preds)
return preds

X, y = make_regression(n_samples=1_000, n_features=4)

reg_trunc = TruncatedRegressor().fit(X, y)

preds = reg_trunc.predict(X)
print(f"mean: {preds.mean():.2f}, max: {preds.max():.2f}")
# mean: -6.81, max: 345.10

preds_trunc = reg_trunc.predict(X, max_score = preds.mean())
print(f"mean: {preds_trunc.mean():.2f}, max: {preds_trunc.max():.2f}")
# mean: -56.50, max: -6.81
130 changes: 6 additions & 124 deletions python-package/lightgbm/dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,6 @@
LGBMModel,
LGBMRanker,
LGBMRegressor,
_LGBM_ScikitCustomObjectiveFunction,
_LGBM_ScikitEvalMetricType,
_lgbmmodel_doc_custom_eval_note,
_lgbmmodel_doc_fit,
Expand Down Expand Up @@ -1115,52 +1114,13 @@ class DaskLGBMClassifier(LGBMClassifier, _DaskLGBMModel):

def __init__(
self,
boosting_type: str = "gbdt",
num_leaves: int = 31,
max_depth: int = -1,
learning_rate: float = 0.1,
n_estimators: int = 100,
subsample_for_bin: int = 200000,
objective: Optional[Union[str, _LGBM_ScikitCustomObjectiveFunction]] = None,
class_weight: Optional[Union[dict, str]] = None,
min_split_gain: float = 0.0,
min_child_weight: float = 1e-3,
min_child_samples: int = 20,
subsample: float = 1.0,
subsample_freq: int = 0,
colsample_bytree: float = 1.0,
reg_alpha: float = 0.0,
reg_lambda: float = 0.0,
random_state: Optional[Union[int, np.random.RandomState, "np.random.Generator"]] = None,
n_jobs: Optional[int] = None,
importance_type: str = "split",
*,
client: Optional[Client] = None,
**kwargs: Any,
):
"""Docstring is inherited from the lightgbm.LGBMClassifier.__init__."""
self.client = client
super().__init__(
boosting_type=boosting_type,
num_leaves=num_leaves,
max_depth=max_depth,
learning_rate=learning_rate,
n_estimators=n_estimators,
subsample_for_bin=subsample_for_bin,
objective=objective,
class_weight=class_weight,
min_split_gain=min_split_gain,
min_child_weight=min_child_weight,
min_child_samples=min_child_samples,
subsample=subsample,
subsample_freq=subsample_freq,
colsample_bytree=colsample_bytree,
reg_alpha=reg_alpha,
reg_lambda=reg_lambda,
random_state=random_state,
n_jobs=n_jobs,
importance_type=importance_type,
**kwargs,
)
super().__init__(**kwargs)

_base_doc = LGBMClassifier.__init__.__doc__
Copy link
Collaborator

@StrikerRUS StrikerRUS Jan 27, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do you think it's OK to have just one client argument in the signature, but describe all parent args in the docstring?..

image

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think it's a little better for users to see all the parameters right here, instead of having to click over to another page.

This is what XGBoost is doing too: https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRFRegressor

But I do also appreciate that it could look confusing.

If we don't do it this way, then I'd recommend we add a link in the docs for `**kwargs`` in these estimators, like this:

**kwargs Other parameters for the model. These can be any of the keyword arguments for LGBMModel or any other LightGBM parameters documented at https://lightgbm.readthedocs.io/en/latest/Parameters.html.

I have a weak preference for keeping it as-is (the signature in docs not having all parameters, but docstring having all parameters), but happy to change it if you think that's confusing.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for clarifying your opinion!
I love your suggestion for **kwargs description. But my preference is also weak 🙂
I think we need a third judge opinion for this question.

Either way, I'm approving this PR!

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@jmoralez or @borchero could one of you comment on this thread and help us break the tie?

To make progress on the release, if we don't hear back in the next 2 days I'll merge this PR as-is and we can come back and change the docs later.

_before_kwargs, _kwargs, _after_kwargs = _base_doc.partition("**kwargs") # type: ignore
Expand Down Expand Up @@ -1318,52 +1278,13 @@ class DaskLGBMRegressor(LGBMRegressor, _DaskLGBMModel):

def __init__(
self,
boosting_type: str = "gbdt",
num_leaves: int = 31,
max_depth: int = -1,
learning_rate: float = 0.1,
n_estimators: int = 100,
subsample_for_bin: int = 200000,
objective: Optional[Union[str, _LGBM_ScikitCustomObjectiveFunction]] = None,
class_weight: Optional[Union[dict, str]] = None,
min_split_gain: float = 0.0,
min_child_weight: float = 1e-3,
min_child_samples: int = 20,
subsample: float = 1.0,
subsample_freq: int = 0,
colsample_bytree: float = 1.0,
reg_alpha: float = 0.0,
reg_lambda: float = 0.0,
random_state: Optional[Union[int, np.random.RandomState, "np.random.Generator"]] = None,
n_jobs: Optional[int] = None,
importance_type: str = "split",
*,
client: Optional[Client] = None,
**kwargs: Any,
):
"""Docstring is inherited from the lightgbm.LGBMRegressor.__init__."""
self.client = client
super().__init__(
boosting_type=boosting_type,
num_leaves=num_leaves,
max_depth=max_depth,
learning_rate=learning_rate,
n_estimators=n_estimators,
subsample_for_bin=subsample_for_bin,
objective=objective,
class_weight=class_weight,
min_split_gain=min_split_gain,
min_child_weight=min_child_weight,
min_child_samples=min_child_samples,
subsample=subsample,
subsample_freq=subsample_freq,
colsample_bytree=colsample_bytree,
reg_alpha=reg_alpha,
reg_lambda=reg_lambda,
random_state=random_state,
n_jobs=n_jobs,
importance_type=importance_type,
**kwargs,
)
super().__init__(**kwargs)

_base_doc = LGBMRegressor.__init__.__doc__
_before_kwargs, _kwargs, _after_kwargs = _base_doc.partition("**kwargs") # type: ignore
Expand Down Expand Up @@ -1485,52 +1406,13 @@ class DaskLGBMRanker(LGBMRanker, _DaskLGBMModel):

def __init__(
self,
boosting_type: str = "gbdt",
num_leaves: int = 31,
max_depth: int = -1,
learning_rate: float = 0.1,
n_estimators: int = 100,
subsample_for_bin: int = 200000,
objective: Optional[Union[str, _LGBM_ScikitCustomObjectiveFunction]] = None,
class_weight: Optional[Union[dict, str]] = None,
min_split_gain: float = 0.0,
min_child_weight: float = 1e-3,
min_child_samples: int = 20,
subsample: float = 1.0,
subsample_freq: int = 0,
colsample_bytree: float = 1.0,
reg_alpha: float = 0.0,
reg_lambda: float = 0.0,
random_state: Optional[Union[int, np.random.RandomState, "np.random.Generator"]] = None,
n_jobs: Optional[int] = None,
importance_type: str = "split",
*,
client: Optional[Client] = None,
**kwargs: Any,
):
"""Docstring is inherited from the lightgbm.LGBMRanker.__init__."""
self.client = client
super().__init__(
boosting_type=boosting_type,
num_leaves=num_leaves,
max_depth=max_depth,
learning_rate=learning_rate,
n_estimators=n_estimators,
subsample_for_bin=subsample_for_bin,
objective=objective,
class_weight=class_weight,
min_split_gain=min_split_gain,
min_child_weight=min_child_weight,
min_child_samples=min_child_samples,
subsample=subsample,
subsample_freq=subsample_freq,
colsample_bytree=colsample_bytree,
reg_alpha=reg_alpha,
reg_lambda=reg_lambda,
random_state=random_state,
n_jobs=n_jobs,
importance_type=importance_type,
**kwargs,
)
super().__init__(**kwargs)

_base_doc = LGBMRanker.__init__.__doc__
_before_kwargs, _kwargs, _after_kwargs = _base_doc.partition("**kwargs") # type: ignore
Expand Down
44 changes: 44 additions & 0 deletions python-package/lightgbm/sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -488,6 +488,7 @@ class LGBMModel(_LGBMModelBase):

def __init__(
self,
*,
boosting_type: str = "gbdt",
num_leaves: int = 31,
max_depth: int = -1,
Expand Down Expand Up @@ -745,7 +746,35 @@ def get_params(self, deep: bool = True) -> Dict[str, Any]:
params : dict
Parameter names mapped to their values.
"""
# Based on: https://github.com/dmlc/xgboost/blob/bd92b1c9c0db3e75ec3dfa513e1435d518bb535d/python-package/xgboost/sklearn.py#L941
# which was based on: https://stackoverflow.com/questions/59248211
#
# `get_params()` flows like this:
#
# 0. Get parameters in subclass (self.__class__) first, by using inspect.
# 1. Get parameters in all parent classes (especially `LGBMModel`).
# 2. Get whatever was passed via `**kwargs`.
# 3. Merge them.
#
# This needs to accommodate being called recursively in the following
# inheritance graphs (and similar for classification and ranking):
#
# DaskLGBMRegressor -> LGBMRegressor -> LGBMModel -> BaseEstimator
# (custom subclass) -> LGBMRegressor -> LGBMModel -> BaseEstimator
# LGBMRegressor -> LGBMModel -> BaseEstimator
# (custom subclass) -> LGBMModel -> BaseEstimator
# LGBMModel -> BaseEstimator
#
params = super().get_params(deep=deep)
cp = copy.copy(self)
# If the immediate parent defines get_params(), use that.
if callable(getattr(cp.__class__.__bases__[0], "get_params", None)):
cp.__class__ = cp.__class__.__bases__[0]
# Otherwise, skip it and assume the next class will have it.
# This is here primarily for cases where the first class in MRO is a scikit-learn mixin.
else:
cp.__class__ = cp.__class__.__bases__[1]
params.update(cp.__class__.get_params(cp, deep))
params.update(self._other_params)
return params

Expand Down Expand Up @@ -1285,6 +1314,11 @@ def feature_names_in_(self) -> None:
class LGBMRegressor(_LGBMRegressorBase, LGBMModel):
"""LightGBM regressor."""

def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)

__init__.__doc__ = LGBMModel.__init__.__doc__

def _more_tags(self) -> Dict[str, Any]:
# handle the case where RegressorMixin possibly provides _more_tags()
if callable(getattr(_LGBMRegressorBase, "_more_tags", None)):
Expand Down Expand Up @@ -1344,6 +1378,11 @@ def fit( # type: ignore[override]
class LGBMClassifier(_LGBMClassifierBase, LGBMModel):
"""LightGBM classifier."""

def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)

__init__.__doc__ = LGBMModel.__init__.__doc__

def _more_tags(self) -> Dict[str, Any]:
# handle the case where ClassifierMixin possibly provides _more_tags()
if callable(getattr(_LGBMClassifierBase, "_more_tags", None)):
Expand Down Expand Up @@ -1554,6 +1593,11 @@ class LGBMRanker(LGBMModel):
Please use this class mainly for training and applying ranking models in common sklearnish way.
"""

def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)

__init__.__doc__ = LGBMModel.__init__.__doc__

def fit( # type: ignore[override]
self,
X: _LGBM_ScikitMatrixLike,
Expand Down
15 changes: 8 additions & 7 deletions tests/python_package_test/test_dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -1385,14 +1385,15 @@ def test_dask_classes_and_sklearn_equivalents_have_identical_constructors_except
sklearn_spec = inspect.getfullargspec(classes[1])
assert dask_spec.varargs == sklearn_spec.varargs
assert dask_spec.varkw == sklearn_spec.varkw
assert dask_spec.kwonlyargs == sklearn_spec.kwonlyargs
assert dask_spec.kwonlydefaults == sklearn_spec.kwonlydefaults

# "client" should be the only different, and the final argument
assert dask_spec.args[:-1] == sklearn_spec.args
assert dask_spec.defaults[:-1] == sklearn_spec.defaults
assert dask_spec.args[-1] == "client"
assert dask_spec.defaults[-1] is None
assert dask_spec.kwonlyargs == [*sklearn_spec.kwonlyargs, "client"]
jameslamb marked this conversation as resolved.
Show resolved Hide resolved
assert dask_spec.kwonlydefaults == {"client": None}
assert sklearn_spec.kwonlydefaults is None

# only positional argument should be 'self'
assert dask_spec.args == sklearn_spec.args
assert dask_spec.args == ["self"]
assert dask_spec.defaults is None


@pytest.mark.parametrize(
Expand Down
Loading
Loading